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Abstract

We give a complete description of the structure of the spectra of Hill operator
Ly=—y" +(acosx +bcos4k)y, a,b real, xe[0,n]

with periodic or antiperiodic boundary conditions. As in Ince [Proc. London Math. Soc. 23 (1923) 56]
and Magnus-Winkler [Hill's Equation, Interscience Publishers, Wiley, 1969], properties and spectra
of special tridiagonal matrices is a core of our analysis.
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1. Introduction
The Schrodinger operator, considerediun
Ly = —y" +v(x)y, 1.1)
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with a real-valued periodic potentiadx) € L2([0, n]), v(x +71) = v(x), has spectral gaps,

orinstability zones/, , 27), n>1, close to? if nis large enough. The point§ , 4 could
be determined as eigenvalues of the Hill operator

Ly =—y"+vx)y, (1.2)
considered oif0, 7] with boundary conditions

Pert: ) =ym, (0 =y (1.3)
for evenn, and

Per™: y(0) =—ym, y'(0) =-y'(n) (1.4)

for oddn. See basics and details[6,32,27,24,46].

The rate of decay of the sequence of spectral gaps A — 4. is closely related to the
smoothness of the corresponding potentidlVe will mention now only the Hochshtadt’s
result [18] that ar.2([0, =])-potentialv is in C* if and only if (y,) decays faster than any
power of(1/n). See the latest results and further references in [7,9].

In the case of specific potentials, like the Mathieu potential

v(x) = 2a cOS 2, (1.5)
or a more general two-term potential

v(x) =acosZ + bcos 4, (1.6)
general problems lead us to two classes of questions:

() Is thenth zone closed, i.e.,
Vo= — Ay =0, (1.7)
or, equivalently, is the multiplicity of." equal to 2?
(i) If v, # 0, could we tell more about the size of this gap, or, for large enaugbhat is
the asymptotic behavior ¢f, =y, (v)?

Question (i) for potential (1.5) was answered in a negative way by Ince [20]: the Mathieu—
Hill operator has onlysimpleeigenvalues both foPert and Per~ boundary conditions,
i.e., all zones of instability of the Mathieu—Schrddinger operator are open. His proof is
presented in [13]. See other proofs of this fact in [17,28,29].
Question (ii) for the Mathieu potential was solved by Harrell [16] and Avron and Simon
[2]. They showed fow € (1.5) that
.4 .- 8la" 2
R T (1+0a/m). (1.8)
Earlier, Levi and Kellef25] gave asymptotics of the sequenge= y,(a) fora — 0 when
nis fixed. The question about the asymptoticg,gf) in the case of a two-term potential
(1.6) was raised in [2], but remained unsolved. We found such asymptotics both for small
a andb (whenn is fixed), and for largen whena andb are fixed. First we have done it
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(see[10]) in the case when 8& —a2. This led us to a proper understanding of the special
parametrization of the coefficierdsandb in (1.6) which comes from Whittaker’s [47] and
Ince’s [21] analysis of this Hill operator. Further details could be found in Magnus—Winkler
[48,26].

Put forreala, b #0

a=—4at, b=—24° (1.9)

where either botlx andt are real (ifb < 0), or both are pure imaginary (f > 0).
We show in[11,12] that the following asymptotic formulae hold for fixedr andn —
oo : for evenn

o 8|O(|n TC

= 37—z 05(51) | [+ Oogm/m] (110
and for odadn

o 8al" 2| . m

n = T~z (9 (51)| [+ OCoam/m], a1y

where
@2mn-HN=1-3---2m — 1), 2 =2-4-..-(2m).

Proof, with all details, is given ifil2]. It is based, on one hand, on our analytic methods
developed in [7-9], and on the other hand, on the Ince’s approach [20—22] approach [48,26]
to coexistence problem (see (i) above) in the case of potential (1.6). More about Ince’s
gauge transform (2.7)—see Arscott [1], Urwin and Arscott [41], and Magnus and Winkler
[26, Chapter 7].

We need to present (and this is done in this paper) their results in an appropriate form
that serves our goal of finding asymptotics (1.10) and (1.11), or Theorems 1 and 3 in [11].
At the same time we sharpen their results about the multiplicities of the eigenvalues of the
operator(1.2) 4+ (1.6) in the case whergis an integer.

Finally, we give a complete description of the structure of the spectra of this operator,
with full information about mutual positions of eigenvalugs, 4! for Pert and Per™
boundary conditions in Theorem 11.

Volkmer [44] considered the general Ince equation

(1+acos2)y” + B(sin2)y + (c+dcos2)y =0,

wherea, b, ¢, d are real, anda| < 1. In the framework of Ince—-Magnus—Winkler ap-

proach, he gavgl4, Theorems 3 and 4] a solution of the coexistence problem, with detailed

information on positions of eigenvalues corresponding to even and odd eigenfunctions.
Our Theorem 11 could be derived from Theorem 3 or Egs. (27), (28) in [44].

2. Preliminaries on Ince method and the Hill operator (1.6)

In this section, we present in a convenient form for our further analysis the results of Ince
[20-22] and Magnus and Winkler [48,26]. Then we go further into a careful and detailed
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analysis of first open gaps when the series of even (or odd) gaps has only finitely many open
ones.
1. A potential, or a family of two-term potentials

v(x) =asin2x + bcos 4, a, b real (2.2)

and the question about asymptotics of spectral gaps, or zones of instability, of corresponding
Schrédinger operator

Ly=—y" 4+v(x)y, —o00<x <400, (2.2)

has been discussed[,15,10] but until recently the sharp asymptotics of spectral gaps has
not been known. We found such an asymptotics; see Theorems 1 and 3 in [11], and details
in[12].

Notice that we change the potential, or the entire operiatdny using elementary trans-
formations in such a way that the spectrum is preserved both for the Schrédinger operator,
and for the Hill operator, considered wifter* or Per~ boundary conditions.

(a) A shift ofxtox + n/2 change® € (2.1) to

v1(x) = —a sin2x + b cos 4. (2.3)

It implies that without loss of generality in our analysis of spectrd pt= L € (2.2) we
can assume that > 0 (or,a < 0 if we would prefer).
(b) A shift of xto x 4+ ©/4 change®1 € (2.3) to

v2(x) = —aCc0S X — bCOS 4. (2.4)

Let us use this form (2.4) to make the most important transformation which annihilates
the term with higher frequency. (See further comments in Section 5.1).
(c) Put

K =E"'LE, (2.5)
where

Ly = —y" 4+ v2(x)y, (2.6)

Eu = uexp(ocos &), 2.7)

y = u exp(o Cos ). (2.8)

Then

—EYLEu = u"—4a(sin 20)u’+(20°4 (a—40) c0s 2+ (b—24°) cos &)u  (2.9)
and if we choose: so that

20% = b (2.10)
then

(K —Du=EYL—-/)Eu
=—u" + da(sin 20)u’ — (). 4 24% + (a — 4a) COS X)u. (2.11)
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The operatoK, with any choice of a complex numbey is similar toL, so

o(K) =0o(L), (2.12)
althoughK is not necessarily self-adjoint &svas.K is self-adjoint if

o=1ir, 7 real. (2.13)

But K has at least two nice features.

(i) Its potential does not have terms of high-frequency coadd sin 4.

(i) With an even coefficient fou and an odd coefficient fae’, the subspaces of even
functions and odd functions are invariant f&t Therefore K can be considered as a
direct sum of two simpler operatofs®d and K €€" with ¢(K) being a union of the
spectra of these operators.

We make this vague remark (i) more precise in analysis of the Hill opeiatoth Per®
boundary conditions.
2. Now we consideK on [0, ] with boundary conditions

Per™: u(0) =u(n), u'(0)=u'(n), (2.14)
or
Per™: u(0) = —u(n), u'(0)=—u'(n). (2.15)

Two linearly independent eigenfunctions cannot be even (or odd) simultaneously; there-
fore, if w is an eigenfunction oK (in either casePer®) then its even and odd parts are
eigenfunctions as well

wE(x) = %(w(x) + w(—x)). (2.16)

Therefore, ifK hastwo Per™ linearly independent-eigenfunctions, i.e.,
Kw=/w, welL? for Per®, (2.17)

then we haveneeven nonzero solutiomg = w*, andoneodd nonzero solutiom; = w™.
Then

wo(x) = Z A, cosnx, (2.18)
nel
wy(x) = Z B, sinnx, (2.19)
nel’
with
=27, ={0}U2N for Per™. (2.20)

=27, +1=2N—-1 forPer . (2.21)
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Put

I+202=)+b=p (2.22)
and

a =4, SO a-—4o=4ut—1). (2.23)
Now a direct substitution shows that

(K—A)w=0 (2.24)

can be rewritten in the following way:
CasePer™: Then by (2.18)

wo(x) = Ao+ Y A coskx, (2.25)
ke2N
wi(x) = Z By sinkx (2.26)
ke2N

and Eq. (2.24) for (2.25) is equivalent to the systera\&n)

— Ao+ 20(t — 1)A2 = 0, (2.27)
Ao(t + 1)Ag + (2% — ) Az + 20t — 3)A4 = O, (2.28)
20(t — 1+ k)Aj_2+ (k% — WAy +20(1 — 1 — k) A2 =0, k=>4 (2.29)

[In [26] inline (7.17),n = 1, p. 95, corresponding to (2.28), the coefficient 2 is written
although 4 is correct.]
Respectively, for (2.26) Eq. (2.24) is equivalent to the system

(22 — ) Ba + 20(t — 3)B4 = 0, (2.30)
20t — 14 k)Br_o + (k> — 0By 4+ 20(t — 1 — k)Brao =0, k>4 (2.31)

CasePer—: Then we have

wo(x) = Y Ay coskx, (2.32)
ke2N—-1

wi(x) = Y Bysinkx. (2.33)
ke2N—-1

For (2.32) Eq. (2.24) is equivalent to the systeno¢id)
(- pu+20)A1 + 20(t — 2)A3 =0, (2.34)

20(t — 1+ k)Ap_2+ (k% — WAx + 20t — 1 — k) A2 =0, k>3 (2.35)
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Respectively, (2.24) for (2.33) leads to the systerod#)
(1—pu—20t)B1 + 20(t — 2)B3 =0, (2.36)
20(t — 1+ k)By_o+ (k? — ) By + 20(t — 1 —k)Bji2 =0, k>3. (2.37)

3.Inthe case of Mathieu operator (the recurrence systemis simpler ther0herplained
that all gaps are open, i.e., all eigenvalues are simple, by considering a discrete Wronskian.
In the case of the operatérits analog would be the sequence

. kel (2.38)

Ay = Ap A2
By B2

wherel’ means evens faPert and odds forPer —. For Pert we have, ift is not odd, that

_ _ _ (u—4) 1
Ao=1 A= Za(il)’ Aq = 4a25f1)(z—3) - 2;4:—3,
(2.39)
_ _ I el
BO—O, Bz—l, B4—m
and therefore,
t+1
Ao=1, Ay=2-T- (2.40)
t—3
For Per—, if tis not even, then
A1=1, A3 = (u—1—201)/20(t — 2),
(2.41)
By =1, B3=(u—1+20t)/20(t — 2)
and
2t
A= ——. 2.42
1= (2.42)

Notice, that Egs. (2.29) and (2.31), or (2.35) and (2.37) are identicak {putdd or even).
Let us compard- andB-solutions inPer T -case, i.e., when (2.29) and (2.31) hold. Multiply
(2.29) by B, and (2.31) byA; and subtract these identities; we get

200(t — 14+ k)Ap_2 —20(t —1—k)Ay =0, k=4, (2.43)
or
t—1+k%
Ay = ﬁAk—Z k even k>4. (2.44)

In Per— case, by manipulating (2.35) and (2.37), one comes to the recurrence

_k+(t—1)

Y

Az,  k odd, k>3. (2.45)
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If A = (Ap)er and B = (By)er are?-solutions of (2.29) and (2.31) correspondingly
[or, of (2.35) and (2.37)], then by dividing (2.29) and (2.31), and (2.35) and (2.3 by
we get

| Akl + | Be| = %ék, (&) el?
and by (2.38)
Jim k?|Ax| = 0. (2.46)
But for anym € I', by (2.44) or (2.45),
Amszp = (—1)7 (/]‘[i1 %) . (2.47)

If t>0, andm, j > 0

m+2j4i-1_ m+2j-1

> - 2.48
m+2j—(t—-1)" m+2j—-1)+2 ( )
o]
p .
2 -1 1

1—[m+ ].—i-(t )> m + (2.49)

/:1m~|—21—(t—1) m+2p+1
and for anyp

[Am+2pl(m +2p + 1) 2 [Ay|(m + 1). (2.50)
Now (2.46) implies that

A, =0. (2.51)

However, this fact and our evaluation in (2.40) [and (2.42)] show the following:
(a) Iftis not an odd positive integer and solution (2.39) of (2.27)—(2.29) and (2.30)—(2.31)
lies in €2 then

Ay = 2% £0 and Ay=0. (2.52)
(b) If tis not an even positive integer and solutions (2.41) of (2.34)—(2.35) and (2.36)—
(2.37) happen to be i¢? then

2
A= z_tZ £0 and Ay =0. (2.53)

These contradictions prove the following (§26, Theorem 7.9]).
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Proposition 1. Consider the operator

Ly = —y" 4+ (acos X — bcos 4), (2.54)
where
a®>=8b?, t>0. (2.55)

(i) Iftis not odd,then all eigenvalues of L withc = Per™ are simpleso all even zones
of instability are open.

(i) If tis not eventhen all eigenvalues of L withc = Per~ are simpleso all odd zones
of instability are open.

In conclusion of this section, let us notice that the assumpgiion O [see (2.10) or
(2.55)] in Proposition 1 can be omitted.d4f< 0 then (2.10) leads to a pure imaginaty
and (2.55) gives a pure imaginary£ 0. All constructions and arguments remain valid;
even the operator

K (o) = exp(—acoS %)L (a, b) exp(x CoS %), (2.56)

whereL(a, b) € (2.2) + (2.1) is self-adjoint in this case.
If tis pure imaginary, say,= is, then

m+2j—1+is| (m+2j — 172+ 52 l/2>m+2j—l
m4+2j+1—is| \(m+2j+1)2+s2 Tm+2j+1

and as in (2.48), (2.49) we come to inequality (2.50) in the case wher&, sreal.
Therefore, we have

Proposition 2. If b < 0andtis pure imaginary i2.55),then all eigenvalues df € (2.54)
with bc = Per™ or Per™ are simpleso all zones of instability are open.

We analyze the specti(L p,,+) in the case whereis a positive integer in the next
section. However, let us notice that the assumptienO is not a restriction becausand
—t give a rise to isospectral operators.

3. Casea = —4at, b = —24?

0. In this section we consider potentials (1.6), v€x,) = a cos X + b cos 4. Therefore,
we putb = —242 to fit to the previous section, where we consider potentials in form (2.4)
or (2.54), with—b in front of cos 4. There we considered an operafore (2.5) [or (2.56)]
similar toL if

202 = b (3.1)

and analyzed its spectrum by using its decomposition into even and oddk54?ts k °dd
and then dealing with matrix representations of these components. These matrices, or re-
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currences (2.27)—(2.37) will be used in this section as well to get more information in the
case where

a®=8b*, teN. (3.2)

Of course, in view of Propositiod, if t is even, respectively odd, we need to analyze
(L p.r-), respectivelyo(L p,,+).
1. In either case the following elementary lemma will be useful.

Lemma 3. SupposeD = (D;;){ is a three-diagonal matrix of the form

[do po 0 O
qg1di pr 0 0

0 g2d2 p2 00

0 0g3dzp3s0 O
D= (3.3)

O0gn2di2 pp2 O
0 dn—-1 dn—l Pn—1
0 0 dn dy i

with
POs -« Pn—1# 0, q1, .-, qn Z 0. (3.4)

With fixedn, denote

D" = (Dyj)} (35)
and

o =detD*, k=01,...,n. (3.6)
Then

8% + 161 > 0, 3.7)

i.e.,the determinants® and 6* could not be zeroes simultaneously.

Proof. If n = 1 then
ot =dy, 8% = dod1 — poq1. (3.8)

If d1 # Othen (3.7) holds. Butif; =0 thend® = —pogq1 # 0 by (3.4), and (3.7) holds as
well.
Now we proceed by induction hy (recall thatD is (n 4+ 1) x (n 4+ 1)-matrix). By (3.3)

00 = dod* — pogrd°. (3.9)
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If (3.7) does not hold, i.ed° = 6 = 0, then with pog1 # 0 (3.9) impliesd? = 0. Then
ot = 6% = 0, and Dt is n x n matrix, which leads us to a contradictionJ

For Per~ case we need an analogue of Lemma 3.

Lemma 4. Consider twd3-diagonaln x n matrices

(di+d p1 0 O
g2 d2p20 O
0 ¢gz3dsps O O

D* N (310
0 gn-2dn—2pa—2 O
0 @Gn-1dp-1 pu-1
L 0 0 g d
where
Pl s Pu-17#0, q2,...,9, #0 andd # 0. (3.12)
Put
0% = det D*. (3.12)
Then
0% +1671 > 0, (3.13)
i.e.,the determinant§™ and ™ could not be zeroes simultaneously.
Proof. Decomposing along the first row, we obtain
0F = (d1 £ d)0% — p1g2d° (3.14)
S0
2d6% =6t — 5. (3.15)

If 67 = 6~ = 0 thend® = 0 (becaus@ # 0), and by (3.14)% = 0 (becausggz # 0).
But this contradicts Lemma 1 if we apply it to the matfi®. [

2. Letr =2p — 1, p>1. By Proposition 1 (ii), all eigenvalues dfp,, - (and ofK) are
simple. Now we consider the cager™. The spectral equation (2.17) can be split into even
and odd components; i = (A, B) then (2.17) becomes

(K®"— )A =0, (K°¥_/)B =0,
or in matrix form

(H°— A =0, (H?> — i)B =0, (3.16)
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where (withk even)HC is

0 2u(r—1) O

4ot —1) 22 2u(t —3)
0 2ut—-3) 42 20(r — 5)
: . . : (3.17)

20(t — 1+ k) k2 20(r —1—k) -

as it follows from (2.25)—(2.31).
All terms on the off-diagonals are nonzero loumieon thepth line [see (2.29) or (2.31)]

t—1—k=0 if k=2p—2. (3.18)

This partially decouples systems (2.27)—(2.29) and (2.30)—(2.31). If
2p-2

A=(a,d), a=(Apy °, d= (AK)3,. Kk even (3.19)
and the same foB, i.e.,

B=(bb), b=B3 "’ b =B, k even (3.20)
then

O —_ =

1 (Hz, 2 — a (21 / (3.21)

(2) azp-2-20-4(p — Dezp + (H? — pya’ =0,
wheree, = (0;p);cr IS a coordinate unit vector it?, and

) (H3, 5 — Wb =0,

3.22

(2) bzp-2-20-4(p — Dezp + (H? — )b’ =0. (3.22)
Lemma 5. If uis a Per™ eigenvalue for K of multiplicity, then

O(u;0) =0 or o(w o) =0. (3.23)
Remark. With p fixed, we omit it in the notations o andot

50(,u; o) = det(ng_Z(oc) — ,u) , (3.24)

oL ) = det(szp_z(a) — ,1) . (3.25)
Notice that

degd® = p, degét=p—1. (3.26)
If « =0 then

p—1
0% 0) = —uot(: 0) = —u [ [1@)7 — . (3.27)
1
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Proof of Lemma 5. First, we assume > 2. By (ii) in Section 2.1, if

Ku=ypu, u#0 (3.28)
and

dim E(n) =1, (3.29)

then

(i) u is even but no odd nonzero function satisfies (3.28), or
(i) uis odd but no even nonzero function satisfies (3.28).

In case (i)
o
u=Ag+ Y  Apcoskx (3.30)
k=2
keven

and, with notations (3.19), Eq. (3.21) holds. We claim that
8%, o) = 0. (3.31)

Otherwise, by (1) in (3.21) = 0, its componen#;,_» = 0 as well, the second equation
in (3.21) becomes just

(H?" — wya' = 0. (3.32)

With u # 0 we should have’ # 0 as well. But Egs. (3.21.2) and (3.22.2) are essentially
the same, so if we define

B = (07 b/), b/ = a/, (333)

(see notations (3.20)) we get a sequelBseich that (3.22) holds. It gives us a nonzero odd
function

v(x) = Y Agsinkx (3.34)
k=2

keven

which satisfies (3.28), and therefore, the multiplicity.aé > 2. This contradiction proves

(3.31).
In case (ii)
u= Z B sinkx, v #0 (3.35)

k=2
keven
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and

Kv = uv. (3.36)
We claim that

Ot (u; ) = 0. (3.37)
Otherwise, by (3.22.1) = 0, and by (3.22.2)

(H? — b’ =0, b #0.
Then

oo
u= Y Bycoskx, v#0 (3.38)

k=2p
k even

is a nonzero even solution of (3.28). This contradiction proves (3.37). Lemma 5 is proven
for p>2.
If p =1 then the matrix® e (3.17) has the form

00 O
8 4 —4u O
H=170 g 16 -8y .- (3.39)
and
O o)y =—p Ve, (3.40)

but an analogue af* € (3.25)is not defined. We claim: Ifi = Ois an eigenvalue of p,,+
then its multiplicity is 2. Indeed, if: € (3.30) + (3.28)then (3.21.1) tells us that

— uAg =0, (3.41)
S0Ap = 0, and by (3.21.2)
(H? — ya’ =0, a #0. (3.42)

Asin(3.32)—(3.33) itgives a second nonzero solutian (3.34) of (3.28), so the multiplicity
of uis 2.
Vice versa, ifv € (3.35)is a solution of (3.28) then

o0
U= Z By, coskx

k=2
keven

is a nonzero solution of (3.28), and again the multiplicity is 2.
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Therefore, ifp = 1 anduis of multiplicity 1, thenu = 0, i.e., itis aroot of the polynomial
(3.40). Lemma 5 is proven.

3. By Proposition 1(i), for an even= 2m, m > 1, all eigenvalues ol p.,+ (and of the
corresponding operatdf) are simple. [See the comment related to compléx Section
5.5.] So, we need to analyze only the ca3e~. Again, we decompose functions and
K into even and odd components; if by (2.32)-(2.38)= (A; B) then (2.17) becomes
(K®e"— 1nA =0, (K°% — ;) B = 0, or in matrix form

(Ht —wA=0, (H —wB=0, (3.43)
whereA € (2.32), B € (2.33), ' = 2N, and by (2.34)—-(2.37% € T,
[ 1+20t  20(t —2) 0 ]
20(t + 2) 3?2 2u(t — 4) 0
HE=| . : (3.44)

20(t—14+k) k* 2a(t—-1—k) O -

We do not repeat all the details which are essentially the same as in the previous subsection.
All terms on the off-diagonals are nonzero but one in ftté line, whenj, = m as

t—1-2j—1)=0 if t=2m, j=m. (3.45)
Let H: be the left-uppem x m submatrix ofH*, and

8 (s o) = det(H;E — p). (3.46)
Notice that [compare (3.26)] now

dego” =degd” =m>1 (3.47)

in both cases, and f = 0

m

o (0 =0~ (0 =[[[@ - 12— 4] (3.48)
j=1
Now “heads” ofA andB [compare (3.19), (3.20)]
a= (A"t b=(B L kodd, (3.49)

have the same size (m-vectors), and “tails”
a' = (A1, b = (B35, 1. kodd, (3.50)
satisfy

Xom_1 - 40(2m — Vepmsr + (H2m+1 - u) X =0, (3.51)
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wherex’ = (X%, 1, kis odd, andd 2"+ is a lower right infinite block of the matrik/*
without m upper rows andn left columns.

Lemma 6. If uis a Per™ eigenvalue for K of multiplicityl then
0T (u,0) =0 or 6 (u, ) =0. (3.52)

Proof. Would be a copy of the Lemmé&is proof and we omit it. Of course, Lemma 4 is
used instead of Lemma 3.

4. Lemmas 5 and 6 already lead to conclusion thaidfan integer then all but maybe
[t/2] gaps are closed.

Proposition 7. (&) If r = 2p — 1, p>1, then the number of open even gaps does not
exceetp — 1.
(b) If t = 2m, m >1, then the number of open odd gaps does not exeeed

Proof. Each open gapi~—, A7}, or {u~, u*}, gives two simple eigenvalues &fp,,+ or
K p.,-. Such eigenvalues, by Lemm&snd 6, are among the roots

R*=ROURY, RO:={u: woy =0}, RY:={u: o*(wo)=0} (3.53)
for u € g(Per™), and
R.=RTUR™, RV :={u: o (ua)=0}, R :={u: o (u;a) =0}(3.54)

for u € a(Per™).
Withr =2p —1>1, by (3.26),

HR*<p+(p-1=2p—-1+1 (3.55)

and the number of pairs of simple eigenvalues does not exeeed.
If t =2m, m>1, by (3.47),

#R.<m+m = 2m (3.56)

and the number of pairs of simple eigenvalues does not exegladboth cases, this number
is <[t/2]. O

4. Finitely many open even (odd) gaps

Proposition7 gives some improvement of Theorem 7.9 in [26, p. 107], which claims the
inequality <[t/2] + 1. But we want to get more information about the structure of these
open gaps. In particular, we will explain that the number of those gagrgualto [7/2].

1. We need a few technical remarks on matrigg¥ (of (3.21)—(3.22)) andd?"+1 ¢
(3.51). Lemmas 3 and 4 told something abdiuntite tridiagonal matrices. Now consider
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an infinite tridiagonal matrix, h = D + P + Q, with D being diagonal and’, Q off-
diagonals,

do po
q1 d1 p1
h = . 4.1
q2 d2 p2 (4.1)

We assume that the following conditions hold:

dr € R, |d¢] > o0 (k— ), (4.2)
(Ipel + lgk)/dx — O, (4.3)
pe#0, k=0,1,...; q#0 k=12,.... (4.4)

Lemma 8. The matrix h defines an operator 8 which spectrunw(h) is discreteand
a(h) ={u;}lg’s w; — o0 (4.5)

and eachy = u; € a(h) is an eigenvalue of geometric multiplicity

Proof. Condition (4.3) guarantees that for large enough 0

1
0<k<oo r =+ |d| 2
Indeed, there existls. < oo such that
1
bt lad L g joi, 4.7)
|k | 4
Define
re = 1+ 4sup{|p| + gkl : O0<k<k.); (4.8)
then (4.6) holds for >r,. Put
z=1r, r>r. (4.9

Thenf = (z — k)"t is well defined. Indeed, see (4.1),

2—h=C-D)—(P+Q)=(@—-D)1-T),
T:=(z—D)XP+0), (4.10)

wherez — D is a diagonal operator with diagonal terms

z—di, z—dil = P+ 1AV + 1] /2 (4.12)
Now (4.6) implies that

ITI=llz— D) "P+ Q)<1/2 (4.12)
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and therefore,
- t=A-1tz-D)* (4.13)

is well defined, and (1 — 7))~ 1| <2. In view of (4.11) and (4.2), the operatty— D) Lis
compact, thugz — 1)1 is compact also. By the Riesz Theorem its spectrum is a sequence
{oj} such thatr; — 0, and therefore,

o(h) ={p;}, w;j=z-1/uj— oo. (4.14)
Moreover, the projectors

N A
P =g | G (4.15)

where

1 .
Ci={leC: |[{—ujl=09;, 5j=§rp#lnluj—u;|,
J7F]

are finite-dimensional.

There is onlyoneeigenvectog = g; with an eigenvalug = y; as it follows from (4.1)
and (4.4). Indeed, there is only one sequenee (x;)g°, even without the restriction to be
in ¢2, which satisfiegh — wx = 0, or recurrences

doxo + pox1 =0,
q1xo + dix1+ p1x2 =0
and so on. Ifvg = 7, then (with p; # 0),

do 1
x1=—71, X1 = ——(qexr—1+ dixp). (4.16)
Po Pk

It means that [geometric] multiplicity gf is 1. Lemma8 is proven. [J
2. Now we are ready to prove the following.
Lemma 9. For each realx # 0;
(i) ift =2p — 1then
g(H?)NR* = ¢, (4.17)

whereR* = RO U R! (see(3.53));
(ii) if r = 2m, then

c(H"™hYNR, =0, (4.18)

whereR, = RT U R~ (see(3.54)).
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Proof. By Lemmas3 and 4
RONR'=¢ and R*NR™ =4,
so we need to explain th&dur sets
R°na(h*), R'Na(h*), RTNao(hy), R No(hy) (4.19)

(whereh* = H?? in (i) andh, = H?"*1in (ii)) are empty. The analysis of these four cases
is almost identical. Let us give all details to prove (ii)-subcase

RT Na(hy) =0. (4.20)
If (4.20) does not hold, then for somec a(h,)
S (W =0"(w0) =0. (4.21)
By (3.46) it implies thaBla™ # 0, a™ € C™ such that (see (3.44)—(3.46))
(H,y —wat =0, a" =N jodd. (4.22)
Notice thatA] , # O; otherwise by
qom—14A3, 5+ (don—1— WA, 1 =0 (4.23)

we hadAgmf3 = O as well, and a backward induction by lines of (4.22) showsdtat 0.
Butitis NOT the case.
Of course, in (4.22)4,} is a submatrix off * € (3.44), and

dy =k, qi=20(2m —1+k), pi=202m—1-k). (4.24)
With pt € a(hy), hy = H?"T1, we have an eigenvectors 0,
(hy —we =0. (4.25)

By Lemmas 1 has a (geometric) multiplicity 1, and = ¢2(F), whereF is the set of all
odd integers >2m + 1 can be decomposed as a direct sum (not necessarily orthogonal)

Y=ImP+Im(1-P), (4.26)
with
1 -1
P==— (z — ho) "z, (4.27)
2mi |u—z|=¢
where

1.
€= Emln{lu—iflt Eea(hy), &# ).

Now we will use theh,’s properties; it is a restriction adf €Ve", or K, on its invariant sub-
spaceY. The operatoik = K p,,— is similar to a self-adjoint operatdrp,,-. [This is not
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the case iz, b in (2.1) and (2.4) are not real; see further comment in Section 5.5.] There-
fore, the geometric multiplicity of eadh,-eigenvalue is equal to its algebraic multiplicity.
Lemma 8 implies that

dmIimP=1 andImP ={é: ¢eC} (4.28)
PutU = Im (1 — P); then (4.26) can be written as

Y={c}+U, hUCU, (4.29)

o(h|U) = a(h) \ {u}. (4.30)

Of course,< S) is au-eigenvector ofk ©V¢"[see (3.43)—(3.51)]. Let us try to find another

+
u-eigenvector of the forn( ay ) , Wherea™ € (4.22), y € Y oreveny € U.

We have
(K= (a; ) = [mgn_lez(ni{ T él;l%;“ — u)y} ’ (4-31)
wheret = g2,,+1 = 20 - 4m. By (4.29)
eom+1 = yc + u, yeC, uel. (4.32)
Choosey = y* € U in such a way that
TAS qu+ (HZ" -yt =0 (4.33)
By (4.30) the operatogh, — w)|U is invertible, so
Y= (u—h) A} u (4.34)
is well defined,; it solves Eq. (4.33). Therefore, by (4.31),
(Ko — 1) <“+ > = [ J0 ] , T =8um # 0. (4.35)
y TA,,, _17C

We have no control on; it comes from (4.32). Let us analyze the alternative= O or
v #0.

If y = 0, with a™ # 0, we have two linearly independepteigenvectors(8) and

+
<C;* ) for K€Ve" But it is impossible, as we noticed in Section 2, (2.14)—(2.21).

If y # 0 then the coefficienf = rA}m_ly in (4.35) is not zero as well by (4.31) and
+
(4.23). In this casgp = (S) and f1 = <c;* > give us a Jordan block because

(K®*"— ) fo=0 and (K"~ wfi=7fo, 7#0. (4.36)

But, this is impossible because the operator K €e"+ K °dds similar to a self-adjoint
operatorL, and its invariant subspade = span({ fo, f1} should havelf'WOlinearly inde-
pendenfu-eigenvectors. This contradiction completes the proof of the claim.20]. As
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we noticed, other three sets in (4.19) could be analyzed in the same way to prove that they
are empty. U

3. In Lemmas 5, 6 we showed that any eigenvalug multiplicity 1

(i) for K p,+ whenr = 2p — 1is a root ofé° or 6* (see (3.23)—(3.25));
(i) for K p,,- whenr = 2m is a root of6™ or 5~ (see (3.46)—(3.52)).

Now we will prove that the inverse is true.

Lemma 10. Leta be real and nonzero.

(i) If t = 2p — 1, then eachu € R* is simple root oB° or 6%, and i is an eigenvalue of
K p.+ of multiplicity 1.

(i) If r = 2m, then eachu € R, is simple root of5™ or =, and u is an eigenvalue of
K p.— of multiplicity 1.

Proof. Again we have four cases’ or ot in (i), ands™ or 67 in (ii). The analysis of these
four cases is almost identical. Let us give all the details in the (i)-subfase
Assume that

ot =o. (4.37)

By Lemma9 the operatoth* — p) is invertible. For brevity, let us writg = H22p—2 (see

(3.22.1), (3.25), (3.37)). It as aroot ob(z) = detz — g) has multiplicity > 2, then there
are two linearly independent vectors

b, bfeCP Y bE ={BF(j))5" % Jjeven ¢=1,2, (4.38)
such that

(g—mwbi =0 and (g— by = by. (4.39)
Put

1= (n—h")""tBf (2p — 2)ez, (4.40)
and

v2 = (—h*) " [~Ey1+ 1B (2p — 2ezp] . (4.41)

These vectors are well defined because by Ler@()ahe operato(u — 1*) is invertible.
Then [compare (4.31)—(4.35)] by (4.39)—(4.41)

(Kodd_u)'bf':' (g — Wby }:[o}
v | LB @p— ey + (h* — )7ty 0

and

odd _ _bz_z_(g—M)Bf]z [bf]
<K #)_yz_ < . v’
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. bt
or with f; = ,o=1,2,
Yo

(k%-p) =0, (K¥—p) fo=¢h (4.42)

By (4.38) f1 and f> are linearly independent odd functions. Again [compare the end of the
proof of Lemma 9, after (4.34)] if = 0, then we have TWO linearly independent odd
u-eigenfunctions foK that is impossible. 1€ £ 0 then f; and f> give us a Jordan block

by (4.42), but it is impossible either, becauéés similar to the self-adjoint operatdr. It
proves thafu is adl-root of multiplicity 1. In this case a vectd:rf, bf € (4.39), does
exist, and withy1 € (4.40) give an oddu-eigenfunction

b+
n=["]#0 (@49

for K or K°94 If 1 is of multiplicity > 2 for K then there exist an even function (vector)
A=(a,a)#0 (4.44)
(see (3.19), (3.21)) such that (3.21.1)~(3.21.2) hold.# 0, then by (3.21.1),
3w =0;

however, by Lemma 1, (4.37) implies th#(x) # 0. With a = 0, (4.44) requires:’ # 0.
But then by (3.21.2)

(HZP - ﬂ) a =0 for pea(H?) (4.45)

which contradicts Lemma8, (4.17). Thereforey € (4.37) is a simple eigenvalue k.
Lemma 10 is proven. [J

4. The technical lemmas in this section have quite elementary proofs; sometimes—and
it is often essential—these proofs use the fact that our non-symmetric matrices represent
operators similar to self-adjoint ones.

Direct analysis of these matrices and polynomﬁ&lsﬁl, 6* and their zeroes can be done
with a help of few basic facts about OR#thogonal polynomial sequences. Let us remind
these facts (we refer to [6] for details and proofs; see Sections 1.4-1.6, pp. 18-28).

For any sequences, }{° of reals and4,}5°, 4, # O, let us define polynomials

Po(x) = —cp)Pr1—nPu2x), n=1212 ..., (4.46)
P 1(x)=0, Pyx)=1 (4.47)

(compare (4.1) and (4.6)6, pp. 18-21]). Then for each € N the zeroes of?, (x) are
real and simple [6, Theorem 5.2, p. 27]. Let us denote its zeroe8®ybeing ordered by
increasing size, i.e.,

XD < X2 << X)) <x"(+1) << X (n). (4.48)
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The zeroes of, (x) and P, 1(x) mutually separate each other, i.e.,
OO < x"G) <"+ D) << X" 41, i=1,....n (4.49)

[6, Theorem 5.3, p. 28].

These statements are useful to us becaliaads* could be considered as two consequent
terms of such OPS. Indeed, with= 2p — 1 the matringp_2 in (3.24), (3.25) and (3.17)
is

0 2u-2(p—1)
4y - 2p 22 200 2(p — 2)

0 2u-2(p+1) 42 200-2(p — 3) (4.50)
20-2-2(p—1) 2p — 2)?
All elements on the off-diagonals are not zeros. We go backward; put
01(x) = 2(p - 2))* - x, (4.51)
0c(x) = det[Hz?;{‘z") - x] : (4.52)
As we already noticed
Qk+1(x) = (ck+1 — X) Qi (x) — A+1Qk-1(x), (4.53)
where
= Qp—k)? 1<k<p, (4.54)
=Gk —1)2p—k16s%, 2<k<p-1, (4.55)
Ay =322(p — 1)p. (4.56)
We can (arbitrarily) put
¢, =0, =1 for k > p, (4.57)

to have OPS well-defined for alle N, butwe are really interested only in two polynomials
P =0, and i) =0, 1(x). (4.58)

If x0i), 0<i < p — 1, andx1(i), 1<i < p — 1, are the zeros of° ands* being ordered
by increasing size as (4.48), by (4.49) we have

x20) <xt1) <x%1) < <xti) <x%) < < xo(p —-1). (4.59)

Therefore, the roots o’ andd* are real and distinct [we knew this by LemiBlaand they
interlace, i.e., (4.59) holds for all# 0. The latter is animportant corollary of (4.46)—(4.49).
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Analysis of zeros ob" and¢é™ is a little more complicated. Recall that (3.46) defines
these polynomials (with parameterby matrices (3.44)

1+4am da(m —1)
4o(m + 1) 32 Aa(m — 2)
0 4ou(m + 2) 52 4o(m — 3)

HE = (4.60)
43(2m — 1) 2m — 1)2
Now 6" andd™,
6F = det(H;F — ) (4.61)

are polynomials of the same ordarbut OPS theory helps us if we notice (compare with
Lemma4) the following. The left column is a sum of

1 + dam

4o(m + 1) 0
0 and 0 . (4.62)
0 0

This decomposition implies that
0 (x; o) = P(x; o) & dam Q(x; o), (4.63)
whereP andQ are consequent polynomials of OPS we could construct by using the matrix

1 do(m — 1)
4o(m + 1) 3? 4o(m — 2)
2
S S (4.64)
43(2m — 1) (2m — 1)2

for a backward procedure in the same way as we used matrix (4.50) to epra&H Hrad
o' in (4.58) have this property. Let

zj(w), 1<j<m  and Z;(o), 2<j<m, (4.65)
be the zeros oP andQ in (4.63). Again by (4.49) they interlace so
z1(0) < Z2(0) < z2(2) < -++ < Z (@) < Zm (o). (4.66)

But these zeros are not (case (4.59) was easy) the zeros of our polynémial$4.63).
Still (4.66) is important and useful. Let

E@, 1<j<m, (4.67)
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be zeros ob*. We know that

PO =1-200=a-2]][@ -1 (4.68)
j=2
and
E0)=@2j—-17 1<j<m, (4.69)
7j(0) = @2j - 17 1<j<m, (0 =(2j - 1% 2<j<m. (4.70)

We know by the above analysis that(x), 1< j<m, are distinct for all reak, and
Zj(w), 2< j <m are distinct as well. Therefore they are analytic functions. af R as
roots of polynomials with higher coefficieatl. Eq. (4.69) tells us that these roots are
distinct if & = 0 so they remain distinct for small enoughcertainly, if|«| < 1/7.Let us
assume for a while that| < 1/7.We want to show that for & « < 1/7

Q@ <@ <G < <&@ <@ (4.71)
Becausd® andQ are of ordemandm — 1, the rootz1(«) is special, so first we prove that

() <& (), 0<a<1/7. (4.72)
With notations (4.65) and (4.67)

P(z,0) = ﬁ(Zk(“ —2) = (z1(®) — 2 Ra(z, ), (4.73)
1
where
Ry = lf[(zk(a) —2) (4.74)
and
0@z, 2) = ﬁ(zk(a —2)) = Ri(z; ). (4.75)
2
Then
P& (0); @) = (z1() — & () Ry (), (4.76)
where
Ry (2) = Ru(&) (2); 0) = ]f[(z;c(oo — & @) 4.77)
and

Q& (2); ) = Rf (), (4.78)
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where
Ry () =[G — & (). (4.79)
2
All these functions are analytic anfor || < 1/7. Our basic equation foﬁE is (4.63); it
implies
(22000 — & () RY (0) £ dmoRs () = 0, (4.80)
EE () = 21(0) % dmor (zili(a) /Rf(oc)) . (4.81)
By (4.77), (4.79) and (4.69)

RFO =Rf =[] = [(Zj —12 - 1] . (4.82)
2

Therefore, for some, > 0 and—o}, < o < o, the ratiosR;" /R and Ry /R on the
right-hand side of (4.81) are certainly positive and between 1/2 and 2, so

& <z <&@, 0<au<do (4.83)
and
& <z <& (@), —of, <a<O. (4.84)

Now we consider the rootér}k, 2<j<m.For2<k<m, asin (4.73)—(4.79)

P(z,0) = (z1() — 2) Ri(z; ), (4.85)
where
Rizoo) = [] zj@ —2) (4.86)
j=2
j#k
and
0(z, o) = (Zx(x) — 2) ]_[ (Zj (@) — 2) = (G (@) — 2) R (z; ). (4.87)
j=2
j#k
Put
RE (@) = Pu(& (@); ) (4.88)
and

RE(0) = Pr(&E () ). (4.89)
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Asin (4.82)
REO) = RFO) = [] [(2]' —12— 1] . (4.90)
j=2
j#k

All these functions are analytic anfor |«| < 1/7, and for somes** > 0 (the same for all
k, 2<k<m)if ais real andua| < o**, then we have

1/2 < R} (/R (@), Ry (0)/R; (2) < 2. (4.91)
The basic equation (4.63) f@f(a) implies:

(z2(0) — EE@)) 2k (@) — EE@)RE(@) £ dmaGr(2) — EF@)RE(@) =0 (4.92)

and
3= ~ +

() = & () + dmy 2’%8 T Z%(SZ)_ @ o, (4.93)
or

(@) = 2k (0) %= dmouZr () — 2k () S} (%), (4.94)
where

SE() = R—’i : ;i |:1:|:4mocR—ki : %} l (4.95)

R za(o) — & (o) Ry za(o) — & (o)

with

EE0) = (2 — 1) and z1(0) = 1. (4.96)
For |o| < o the denominator

2a(0) — EE (@) < (1 — (2% — 1)2) +1< 7 if k=2, (4.97)
is negative and

SE@) <0, ol <o, (4.98)
By interlacing (4.66) we obtain

0 < zx(0) — Zx (), (4.99)
S0 (4.94), (4.98) and (4.99) imply for@ o < o* that

& @) < (@) < & (@) (4.100)
and for—a <o <0

@ <@ <& (@, 2<k<m. (4.101)

Fork = 1itis proven in (4.83) and (4.84).
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We explained (see Lemn#g that
R"NR =@ for a #0. (4.102)
Therefore, the interlacing
Q@ <@ <G < < &0 <&@, (4.103)

which we have just proven for & o < o will remain valid for all > 0. The same
extension by continuation will preserve the interlacing

) <&@ <&@ <-- <& <&, (4.104)

forall o < O.

It is interesting to notice for the roots of that their ordering changes (see (4.103) and
(4.104)) whenx goes from positive to negative. (It does not happen inRhet case (see
(4.59)). But this is not surprising because

O ) = 3% —o)  and 8w ) = (1 —), (4.105)

i.e.,6° ands! are even with respect ta but ™t (u; —or) = 67 (u; a).
5. We can summarize the analysis and results of this section as the following.

Theorem 11. Let

v(x) =acosX +bcosd, a=—4at, b=—24> real, o #0, (4.106)
be a potential of the Hill operator

Ly=—y " +vx)y, O0<x<m. (4.107)

() ft =2p—1, p>1,andbc = Per™ then the firsp — 1 eigenvalues are simpland
others are double,

Ig() <y () < i) <--- < Ja(p-1)(@) < z;pfl)(a)
< g, (@) < zgp(a) < Jg;(2) = zgj(a) j>p. (4.108)
Moreover the eigenvalueﬁ;{k(a), 0<k<p—1, are zeros of the ponnomiéP(u, o),
and the eigenvalues,, (x), 0<k< p — 1, are zeros of the polynomiéﬂ(u, o).

(i) Ift=2m, m>1,andbc = Per~, then the firsBm eigenvalues are simple and others
are doublej.e.,

IE(0) < 7500 < -+ Az _1(0) < Ay iq(0) < -+ (4.109)
and
dojq(@) < i;j_l(oc), 1<j<m,  Jgiq(@) =2y, (@), j=m. (4.110)

Moreover,the eigenvalueé{jfl(oc), 1< j <m, are zeros of the polynomial® (x, o)
if « > 0, and of the polynomiad™ (u, «) if « < 0, andv.v., the eigenvalueégj_l(oc),
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1< j <m, are zeros of the polynomiél (u, o) if o > 0, and of the polynomiai™ (u, o)
if « <O.

6. Just to demonstrate how the structure of spectra changes when the parameters
cross the integer levels ofin (3.2) we consider pockets of instability of one-parametric
family of potentials

v(x) = —7(8cos & + 8cos 4). (4.111)
According to (3.2)

8(—80)1% + (81)> =0, (4.112)
S0

r =12 (4.113)

Therefore, all eigenvalues in the case of potentiad (4.111) are simple (the zones of
instability are open) it is not an integer.

If + = 72 is an integer then according to Theorem 1 the firsines are open, the+ 1)st
zone is closed, and then they interlace, i.e., the zore&n, m = 1,2, ..., are open and
the zones +2p — 1, p=1,2,..., are closed. It is shown in the following diagram.

\/F

10

=~

ot

v,

I
S

6 7 8 10 i
v(w) = 7(8sin 2z + 8 cos 4a)

(e}

—

O Comupncct
w

N

(10 &
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We need to point out that this is a diagram, not a real graph. It ignores the valiigs of
and how two curves,, (1), /(1) intersect at the integer®. Even att = 0 the diagram

n

does not show the level of contact of these curves with the same tangent (vertical) line.

5. Comments; conclusion

1. The crucial step in killing a higher-frequency term of potential (2.4) is transformation
(2.7) used by Ince [21] in the 1920s, and Magnus and Winkler in the 1950s. Of course, in
the 1980s such type of gauge transform became routine in both mathematical and physical
literature, but it was not a standard procedure in the 1930s or even in the 1950s. True,
one can find “Sommerfeld procedure” as Razavy [33] put it, in the 1929 book [36], and
occasionally in the 1930s and 1940s. But even the Razavy’s observation [33] in 1980 that
the bistable potential in the Schrddinger operator

1 1
Ly =y" + <8 + gcfz + (n —1)¢cosh & — g cosh zk)
following the Sommerfeld procedure
1
V= exp(—4 cosh 2:) @(x)

brings us to an operatdt = E-1LE,
Ko =¢" — Esinh g + (e +nécoshX)g

without terms of the rate 4, has been considered as a breaking news. Of course, this is the
same transform (2.5)—(2.11) used by Ince in 1923 if you charigéx.

Klotter and Kotowski in 1943 did numerical calculations [23] to see the behavior of the
eigenvalues of this operator but they used the five-diagonal matrix to present operator (2.6)
in trigonometric basis as it directly follows from (2.4). Multiplication by this potential is,
in an obvious way, a five diagonal matrix.

2. A tridiagonal matrix representation led Magnus and Winkler [48] to Theorem 7.9 in
[26, p. 107], becausa zeroon the off-diagonal changes drastically the spectra and gives a
very special finite-dimensional subspace (invariantar L, or for adjointK*). It makes
the work of Magnus and Winkler in the 1950s quite a remarkable piece—if we follow
the language of the 1990s [39,40,14]—in the theory of quasi-exactly solvable differential
equations, or QES. Indeed, this is one of the canonical examples in this QES-theory (see
(60) and (65) in Turbiner [38]). But one cannot see in this literature any mentioning of Ince
[20—22] or Magnus and Winkler results from the 1950s [48], or their exposition in the books
[1,26] published in the 1960s.

3. Our Theorem 11 sharpens the results of Magnus and Winkler by giving complete
analysis of spectra of a “head” matrix (or, the algebraic sector, as Shifman and Turbiner say
in [34]) and a “tail” matrix and their relationship. By (not well motivated) analogy we can
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ask whether the same spectral properties are observed in quasi-exactly solvable equations
of one variable (see their catalogud 8] or [39,40]).

A. Are all eigenvalues in the algebraic sector simple?

Of course, the answer is positive, if one can bring this block (by some gauge transforma-
tion?) to tridiagonal matrix without zeroes on the off-diagonals. In our context Lemma 10,
together with Lemma 9, gives a positive answer to Question A.

Next two questions are vague because, with great emphasis on an algebraic sector (finite-
dimensional invariant subspace), QES-theory does not define in a canonical way a remain-
der, or a compliment, or a “tail” block of the differential operatowhich is quasi-exactly
solvable.

B. Are the eigenvalues of such an operdtorhich is determined by the tail, or which
do not come from the algebraic sector, double, i.e., do they have multiplicity 2?

In our context the answer is YES because the “tail” operators in subspaces of even and
odd functions are just identical; see (3.21.2) and (3.22.Bdr"-case, and (3.50)—(3.51)
in Per—-case.

Of course, if A and B have positive answers, then the eigenvalues of these two classes
could not coincide. [See Lemmas 9 and 10 in our context.] But we do not know this yet, so
let us ask the following question.

C.lIsittrue that eigenvalues from the algebraic sector could not coincide with eigenvalues
coming from outside the algebraic sector?

4. Maybe, in these questions of Section 5.3 we implicitly assume that the opkrator
under the consideration is selfadjoint and parameters are real. Certainly, it was the case in
our analysis of operator (1.2) with potential (2.1)(223)+ (2.55). But it is interesting to
check which statements (from Proposition 1 to Lemma 10) and their proofs depend on the
assumption that is real. To be certain, let us now talk about positive 0 and complex:
with a = —4ar andb = —20.

What Propositions 1 and 2 really showed is that for ary C \ {0} the equation

— " — (4ot cos X + 202 cos )y = Ly (5.1)

cannot have non-zemvenandodd PerT-solutions (ift is not odd) at the same time, and
there could not bevenandodd Per~-solutions (ift is not even).

Technical Lemmas8 (and 4) and 8 hold for any matrices with complex entries as well.

In Lemmas 5 and 6 we have essentially the same effect as in the proofs of Proposition 1
and 2. It becomes more obvious if we point out that “multiplicity 1” there means a weaker
assumption on “geometric multiplicity 1”. The distinction is lost of courskejéfself-adjoint
(andK is similar toL). So Lemmas 5 and 6 hold for amye C \ {0} as well.

But in the proofs of Lemmas 9 and 10, as we have noticed there used in a critical
way thatK is similar to a self-adjoint operatdr. The same should be said about the claim (a
part of Theorem 11) that the roots of a polynomi%dx; o) aresimple, i.e., the eigenvalues
of the “head” (or of the algebraic sector) have ALGEBRAIC multiplicity 1. This is not
necessarily true if is complex. Let us consider explicit examples.

Example 1. Per—-casey = 4, orm = 2. By (4.60)

2 Five lines after (4.27) or the paragraph after (4.42).
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1+8x—2z 4a

.. —
0 (z;0) = det|: 12 9_

Z:|=z2—10z+9:|:89c(9—z)—480£2

and

6" = 2% — (10+ 8o)z + 9+ 72x — 4842,

6" =72 — (10— 80)z + 9 — 72 — 48:°.
Roots ofé™ are

5+ 4o + 4(1 — 20 + 40?)Y/?
and foro™

5 — do £+ 4(1 + 20+ 4o?) /2,
These roots & i+/3 are of multiplicity 2,

if o= (1+iv3)/4 for 6T, (5.2)
or

if «=(—1+i/3)/4 for 6. (5.3)
The operatork €®"and K °49 have Jordan blocks (in their “heads”) if (5.2), or (5.3), hold.

Example 2. This example is more interesting and more complicated becauséhisma
polynomial of degree 3. We consid@er™ -casey = 5, or p = 3. By (4.50)

—z 8u 0
Ozoy=det| 240 4—7z 4du | = —(2% — 202 + 64(1 — 442) + 3.2102).
0 16x 16—z

It has a double road in the case othreevalues ofx2, or six values ofx :
o = £i0.14796395, a= 2.057664008;
o = +(—.55376044+ i.5717989), a= 4.4300839+i4.674391484

o = +£(.55376044 i.5717989), a= 4.4300839-i4.674391484

But these three values afare L p,,+-eigenvalues of geometric multiplicity 1 anyway.
For curiosity, let us notice that

4—7 A4y

1 _
0 (z, oc)_det[ 16x 16— =

} = 72— 20z + 64— 644,
Its roots are 16 /36 + 6402, s00* has a root-10 of multiplicity 2 if o = +3i /4. Again,
Lp,,+, Orits restrictionk °4 has a Jordan block.

5. Examples in the previous subsection show that in Lem®@d$) and Theorem 11
the assumptions that, b be real, orL be self-adjoint, are important. But let us follow
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[3,35,19,4,5,37] and raise a general question about the structure of spectral Riemann surfaces
related to these problems. Of course, itwould be interesting to changednadhin complex

plane, i.e., to considdr, t) € C? but for a while, let us talk about fixed positiveDefine,

for eachr > 0, four surfaces

Go(r) = {(u, o) : 3x € £2(2N — 2) such that HO(a)x = px},
G1(1) = {(u, ) : 3x € £2(2N) such that H3(x)x = px},

Gt() ={(u, o) : Ix € 22N — 1) such that Ht(x)x = px},
G~ (1) = {(u, o) : 3x € £2(2N — 1) such that H™ (x)x = ux},

where for each parity7®, H? are defined by (3.16)—(3.17), aiti* are defined by (3.44).

What is the structure of these surfaces?

In the case of anharmonic oscillator equation such a question has been raised and solved
by Bender and Wu [3]; see also [35,37]. The case of Mathieu—Hill operators has a longer
history (see [30,31,4,5,19,42,43,45]).

If tisanintegerthen as we have seen in our text [but this is really the Turbiner’s observation
[37] aboutany quasi-exactly-solvable differential operatoflp and G, are split into two
surfaces ift is odd, whileG* andG~ are split into two surfaces ifis even, one of them
being algebraic. These surfaces are zero-surfaces of ponnoSﬂiamjél, orét andd™
respectively. Examples 1 and 2 in Section 5.4 give some branching points (of order 2) of
these surfaces.

But their structure in general remains a mystery.
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