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Abstract

We give a complete description of the structure of the spectra of Hill operator

Ly = −y′′ + (a cos 2x + b cos 4x)y, a, b real, x∈ [0,�]

with periodic or antiperiodic boundary conditions.As in Ince [Proc. LondonMath. Soc. 23 (1923) 56]
and Magnus–Winkler [Hill’s Equation, Interscience Publishers, Wiley, 1969], properties and spectra
of special tridiagonal matrices is a core of our analysis.
© 2005 Elsevier Inc. All rights reserved.

Keywords:Hill operator; Two-term potential; Coexistence problem

1. Introduction

The Schrödinger operator, considered onR,

Ly = −y′′ + v(x)y, (1.1)
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with a real-valued periodic potentialv(x) ∈ L2([0,�]), v(x+�) = v(x), has spectral gaps,
or instability zones(�−

n , �
+
n ), n�1,close ton2 if n is large enough. The points�−

n , �
+
n could

be determined as eigenvalues of the Hill operator

Ly ≡ −y′′ + v(x)y, (1.2)

considered on[0,�] with boundary conditions

Per+ : y(0) = y(�), y′(0) = y′(�) (1.3)

for evenn, and

Per− : y(0) = −y(�), y′(0) = −y′(�) (1.4)

for oddn. See basics and details in[26,32,27,24,46].
The rate of decay of the sequence of spectral gaps�n = �+

n − �−
n is closely related to the

smoothness of the corresponding potentialv.We will mention now only the Hochshtadt’s
result [18] that anL2([0,�])-potentialv is inC∞ if and only if (�n) decays faster than any
power of(1/n).See the latest results and further references in [7,9].
In the case of specific potentials, like the Mathieu potential

v(x) = 2a cos 2x, (1.5)

or a more general two-term potential

v(x) = a cos 2x + b cos 4x, (1.6)

general problems lead us to two classes of questions:

(i) Is thenth zone closed, i.e.,

�n = �+
n − �−

n = 0, (1.7)

or, equivalently, is the multiplicity of�+
n equal to 2?

(ii) If �n �= 0, could we tell more about the size of this gap, or, for large enoughn, what is
the asymptotic behavior of�n = �n(v)?

Question (i) for potential (1.5) was answered in a negativeway by Ince [20]: theMathieu–
Hill operator has onlysimpleeigenvalues both forPer+ andPer− boundary conditions,
i.e., all zones of instability of the Mathieu–Schrödinger operator are open. His proof is
presented in [13]. See other proofs of this fact in [17,28,29].
Question (ii) for the Mathieu potential was solved by Harrell [16] and Avron and Simon

[2]. They showed forv ∈ (1.5) that

�n = �+
n − �−

n = 8|a|n
[(n − 1)!]2

(
1+ O(1/n2)

)
. (1.8)

Earlier, Levi and Keller[25] gave asymptotics of the sequence�n = �n(a) for a → 0 when
n is fixed. The question about the asymptotics of(�n) in the case of a two-term potential
(1.6) was raised in [2], but remained unsolved. We found such asymptotics both for small
a andb (whenn is fixed), and for largen whena andb are fixed. First we have done it



72 P. Djakov, B. Mityagin / Journal of Approximation Theory 135 (2005) 70–104

(see[10]) in the case when 8b= −a2. This led us to a proper understanding of the special
parametrization of the coefficientsa andb in (1.6) which comes fromWhittaker’s [47] and
Ince’s [21] analysis of this Hill operator. Further details could be found in Magnus–Winkler
[48,26].
Put for reala, b �= 0

a = −4�t, b = −2�2, (1.9)

where either both� andt are real (ifb < 0), or both are pure imaginary (ifb > 0).
We show in[11,12] that the following asymptotic formulae hold for fixed�, t andn →

∞ : for evenn
�n = 8|�|n

2n[(n − 2)!!]2
∣∣∣cos(�

2
t
)∣∣∣ [1+ O((logn)/n)

]
(1.10)

and for oddn

�n = 8|�|n
2n[(n − 2)!!]2

2

�

∣∣∣sin(�
2
t
)∣∣∣ [1+ O((logn)/n)

]
, (1.11)

where

(2m − 1)!! = 1 · 3 · · · (2m − 1), (2m)!! = 2 · 4 · · · (2m).

Proof, with all details, is given in[12]. It is based, on one hand, on our analytic methods
developed in [7–9], and on the other hand, on the Ince’s approach [20–22] approach [48,26]
to coexistence problem (see (i) above) in the case of potential (1.6). More about Ince’s
gauge transform (2.7)—see Arscott [1], Urwin and Arscott [41], and Magnus and Winkler
[26, Chapter 7].
We need to present (and this is done in this paper) their results in an appropriate form

that serves our goal of finding asymptotics (1.10) and (1.11), or Theorems 1 and 3 in [11].
At the same time we sharpen their results about the multiplicities of the eigenvalues of the
operator(1.2) + (1.6) in the case wheret is an integer.
Finally, we give a complete description of the structure of the spectra of this operator,

with full information about mutual positions of eigenvalues�−
n , �

+
n for Per+ andPer−

boundary conditions in Theorem 11.
Volkmer [44] considered the general Ince equation

(1+ a cos 2t)y′′ + B(sin 2t)y′ + (c + d cos 2t)y = 0,

wherea, b, c, d are real, and|a| < 1. In the framework of Ince–Magnus–Winkler ap-
proach, he gave[44, Theorems 3 and 4] a solution of the coexistence problem, with detailed
information on positions of eigenvalues corresponding to even and odd eigenfunctions.
Our Theorem 11 could be derived from Theorem 3 or Eqs. (27), (28) in [44].

2. Preliminaries on Ince method and the Hill operator (1.6)

In this section, we present in a convenient form for our further analysis the results of Ince
[20–22] and Magnus and Winkler [48,26]. Then we go further into a careful and detailed
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analysis of first open gaps when the series of even (or odd) gaps has only finitely many open
ones.
1. A potential, or a family of two-term potentials

v(x) = a sin 2x + b cos 4x, a, b real (2.1)

and the question about asymptotics of spectral gaps, or zones of instability, of corresponding
Schrödinger operator

Ly = −y′′ + v(x)y, −∞ < x < +∞, (2.2)

has been discussed in[2,15,10] but until recently the sharp asymptotics of spectral gaps has
not been known. We found such an asymptotics; see Theorems 1 and 3 in [11], and details
in [12].
Notice that we change the potential, or the entire operatorL, by using elementary trans-

formations in such a way that the spectrum is preserved both for the Schrödinger operator,
and for the Hill operator, considered withPer+ or Per− boundary conditions.
(a) A shift ofx to x + �/2 changesv ∈ (2.1) to

v1(x) = −a sin 2x + b cos 4x. (2.3)

It implies that without loss of generality in our analysis of spectra ofLv = L ∈ (2.2) we
can assume thata > 0 (or,a < 0 if we would prefer).

(b) A shift of x to x + �/4 changesv1 ∈ (2.3) to

v2(x) = −a cos 2x − b cos 4x. (2.4)

Let us use this form (2.4) to make the most important transformation which annihilates
the term with higher frequency. (See further comments in Section 5.1).
(c) Put

K = E−1LE, (2.5)

where

Ly = −y′′ + v2(x)y, (2.6)

Eu = u exp(� cos 2x), (2.7)

y = u exp(� cos 2x). (2.8)

Then

−E−1LEu = u′′−4�(sin 2x)u′+(2�2+(a−4�) cos 2x+(b−2�2) cos 4x)u (2.9)

and if we choose� so that

2�2 = b (2.10)

then

(K − �)u=E−1(L − �)Eu

= −u′′ + 4�(sin 2x)u′ − (� + 2�2 + (a − 4�) cos 2x)u. (2.11)
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The operatorK, with any choice of a complex number�, is similar toL, so

�(K) = �(L), (2.12)

althoughK is not necessarily self-adjoint asL was.K is self-adjoint if

� = i�, � real. (2.13)

ButK has at least two nice features.

(i) Its potential does not have terms of high-frequency cos 4x and sin 4x.
(ii) With an even coefficient foru and an odd coefficient foru′, the subspaces of even

functions and odd functions are invariant forK. Therefore,K can be considered as a
direct sum of two simpler operatorsKodd andKeven, with �(K) being a union of the
spectra of these operators.

Wemake this vague remark (ii) more precise in analysis of the Hill operatorKwith Per±
boundary conditions.
2. Now we considerK on [0,�] with boundary conditions

Per+ : u(0) = u(�), u′(0) = u′(�), (2.14)

or

Per− : u(0) = −u(�), u′(0) = −u′(�). (2.15)

Two linearly independent eigenfunctions cannot be even (or odd) simultaneously; there-
fore, if w is an eigenfunction ofK (in either casePer±) then its even and odd parts are
eigenfunctions as well

w±(x) = 1

2
(w(x) ± w(−x)). (2.16)

Therefore, ifK hastwoPer± linearly independent�-eigenfunctions, i.e.,

Kw = �w, w ∈ L2 for Per±, (2.17)

thenwe haveoneeven nonzero solutionw0 = w+, andoneodd nonzero solutionw1 = w−.
Then

w0(x) =
∑
n∈�

An cosnx, (2.18)

w1(x) =
∑
n∈�

Bn sinnx, (2.19)

with

� = 2Z+ = {0} ∪ 2N for Per+. (2.20)

� = 2Z+ + 1 = 2N − 1 for Per−. (2.21)
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Put

� + 2�2 = � + b = � (2.22)

and

a = 4�t, so a − 4� = 4�(t − 1). (2.23)

Now a direct substitution shows that

(K − �)w = 0 (2.24)

can be rewritten in the following way:
CasePer+: Then by (2.18)

w0(x) = A0 +
∑
k∈2N

Ak coskx, (2.25)

w1(x) =
∑
k∈2N

Bk sinkx (2.26)

and Eq. (2.24) for (2.25) is equivalent to the system (keven)

− �A0 + 2�(t − 1)A2 = 0, (2.27)

4�(t + 1)A0 + (22 − �)A2 + 2�(t − 3)A4 = 0, (2.28)

2�(t − 1+ k)Ak−2 + (k2 − �)Ak + 2�(t − 1− k)Ak+2 = 0, k�4. (2.29)

[In [26] in line (7.17),n = 1, p. 95, corresponding to (2.28), the coefficient 2 is written
although 4 is correct.]
Respectively, for (2.26) Eq. (2.24) is equivalent to the system

(22 − �)B2 + 2�(t − 3)B4 = 0, (2.30)

2�(t − 1+ k)Bk−2 + (k2 − �)Bk + 2�(t − 1− k)Bk+2 = 0, k�4. (2.31)

CasePer−: Then we have

w0(x) =
∑

k∈2N−1

Ak coskx, (2.32)

w1(x) =
∑

k∈2N−1

Bk sinkx. (2.33)

For (2.32) Eq. (2.24) is equivalent to the system (kodd)

(1− � + 2�t)A1 + 2�(t − 2)A3 = 0, (2.34)

2�(t − 1+ k)Ak−2 + (k2 − �)Ak + 2�(t − 1− k)Ak+2 = 0, k�3. (2.35)
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Respectively, (2.24) for (2.33) leads to the system (kodd)

(1− � − 2�t)B1 + 2�(t − 2)B3 = 0, (2.36)

2�(t − 1+ k)Bk−2 + (k2 − �)Bk + 2�(t − 1− k)Bk+2 = 0, k�3. (2.37)

3. In thecaseofMathieuoperator (the recurrencesystem issimpler there) Ince[20] explained
that all gaps are open, i.e., all eigenvalues are simple, by considering a discreteWronskian.
In the case of the operatorK its analog would be the sequence

�k =
∣∣∣∣Ak Ak+2
Bk Bk+2

∣∣∣∣ , k ∈ �, (2.38)

where� means evens forPer+ and odds forPer−. ForPer+ we have, ift is not odd, that

A0 = 1, A2 = �
2�(t−1), A4 = �(�−4)

4�2(t−1)(t−3)
− 2 t+1

t−3,

B0 = 0, B2 = 1, B4 = �−4
2�(t−3)

(2.39)

and therefore,

�0 = 1, �2 = 2
t + 1

t − 3
. (2.40)

ForPer−, if t is not even, then

A1 = 1, A3 = (� − 1− 2�t)/2�(t − 2),

B1 = 1, B3 = (� − 1+ 2�t)/2�(t − 2)
(2.41)

and

�1 = 2t

t − 2
. (2.42)

Notice, that Eqs. (2.29) and (2.31), or (2.35) and (2.37) are identical (butk is odd or even).
Let us compareA- andB-solutions inPer+-case, i.e., when (2.29) and (2.31) hold.Multiply
(2.29) byBk and (2.31) byAk and subtract these identities; we get

2�(t − 1+ k)�k−2 − 2�(t − 1− k)�k = 0, k�4, (2.43)

or

�k = t − 1+ k

t − 1− k
�k−2 k even, k�4. (2.44)

In Per− case, by manipulating (2.35) and (2.37), one comes to the recurrence

�k = −k + (t − 1)

k − (t − 1)
�k−2, k odd, k�3. (2.45)
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If A = (Ak)k∈� andB = (Bk)k∈� are 2-solutions of (2.29) and (2.31) correspondingly
[or, of (2.35) and (2.37)], then by dividing (2.29) and (2.31), and (2.35) and (2.37) byk2−�
we get

|Ak| + |Bk| = 1

k
�k, (�k) ∈  2

and by (2.38)

lim
k→∞ k2|�k| = 0. (2.46)

But for anym ∈ �, by (2.44) or (2.45),

�m+2p = (−1)p


 p∏

j=1

m + 2j + (t − 1)

m + 2j − (t − 1)


 · �m. (2.47)

If t�0, andm, j > 0

m + 2j + t − 1

m + 2j − (t − 1)
� m + 2j − 1

m + (2j − 1)+ 2
(2.48)

so

p∏
j=1

m + 2j + (t − 1)

m + 2j − (t − 1)
� m + 1

m + 2p + 1
(2.49)

and for anyp

|�m+2p|(m + 2p + 1)� |�m|(m + 1). (2.50)

Now (2.46) implies that

�m ≡ 0. (2.51)

However, this fact and our evaluation in (2.40) [and (2.42)] show the following:
(a) If t is not an odd positive integer and solution (2.39) of (2.27)–(2.29) and (2.30)–(2.31)

lies in 2 then

�2 = 2
t + 1

t − 3
�= 0 and �2 = 0. (2.52)

(b) If t is not an even positive integer and solutions (2.41) of (2.34)–(2.35) and (2.36)–
(2.37) happen to be in 2 then

�1 = 2t

t − 2
�= 0 and �1 = 0. (2.53)

These contradictions prove the following (See[26, Theorem 7.9]).
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Proposition 1. Consider the operator

Ly = −y′′ + (a cos 2x − b cos 4x), (2.54)

where

a2 = 8bt2, t > 0. (2.55)

(i) If t is not odd,then all eigenvalues of L withbc = Per+ are simple,so all even zones
of instability are open.

(ii) If t is not even,then all eigenvalues of L withbc = Per− are simple,so all odd zones
of instability are open.

In conclusion of this section, let us notice that the assumptionb > 0 [see (2.10) or
(2.55)] in Proposition 1 can be omitted. Ifb < 0 then (2.10) leads to a pure imaginary�,
and (2.55) gives a pure imaginaryt �= 0. All constructions and arguments remain valid;
even the operator

K(�) = exp(−� cos 2x)L(a, b)exp(� cos 2x), (2.56)

whereL(a, b) ∈ (2.2) + (2.1) is self-adjoint in this case.
If t is pure imaginary, say,t = is, then∣∣∣∣m + 2j − 1+ is

m + 2j + 1− is

∣∣∣∣ =
(
(m + 2j − 1)2 + s2

(m + 2j + 1)2 + s2

)1/2

� m + 2j − 1

m + 2j + 1

and as in (2.48), (2.49) we come to inequality (2.50) in the case wheret = is, s real.
Therefore, we have

Proposition 2. If b < 0and t is pure imaginary in(2.55),then all eigenvalues ofL ∈ (2.54)
with bc = Per+ or Per− are simple,so all zones of instability are open.

We analyze the spectra�(LPer±) in the case wheret is a positive integer in the next
section. However, let us notice that the assumptiont > 0 is not a restriction becauset and
−t give a rise to isospectral operators.

3. Casea = −4�t, b = −2�2

0. In this section we consider potentials (1.6), i.e.,v(x) = a cos 2x+b cos 4x.Therefore,
we putb = −2�2 to fit to the previous section, where we consider potentials in form (2.4)
or (2.54), with−b in front of cos 4x.There we considered an operatorK ∈ (2.5) [or (2.56)]
similar toL if

2�2 = b (3.1)

and analyzed its spectrum by using its decomposition into even and odd partsKeven, Kodd

and then dealing with matrix representations of these components. These matrices, or re-
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currences (2.27)–(2.37) will be used in this section as well to get more information in the
case where

a2 = 8bt2, t ∈ N. (3.2)

Of course, in view of Proposition1, if t is even, respectively odd, we need to analyze
�(LPer−), respectively�(LPer+).
1. In either case the following elementary lemma will be useful.

Lemma 3. SupposeD = (Dij )
n
0 is a three-diagonal matrix of the form

D =




d0 p0 0 0
q1 d1 p1 0 0
0 q2 d2 p2 0 0
0 0 q3 d3 p3 0 0

· · · · · · · · · ·
0 qn−2 dn−2 pn−2 0

0 qn−1 dn−1 pn−1
0 0 qn dn




(3.3)

with

p0, . . . , pn−1 �= 0, q1, . . . , qn �= 0. (3.4)

With fixedn, denote

Dk = (
Dij

)n
i,j=k

(3.5)

and

	k = detDk, k = 0, 1, . . . , n. (3.6)

Then

|	0| + |	1| > 0, (3.7)

i.e., the determinants	0 and	1 could not be zeroes simultaneously.

Proof. If n = 1 then

	1 = d1, 	0 = d0d1 − p0q1. (3.8)

If d1 �= 0 then (3.7) holds. But ifd1 = 0 then	0 = −p0q1 �= 0 by (3.4), and (3.7) holds as
well.
Now we proceed by induction byn (recall thatD is (n+ 1)× (n+ 1)-matrix). By (3.3)

	0 = d0	
1 − p0q1	

2. (3.9)
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If (3.7) does not hold, i.e.,	0 = 	1 = 0, then withp0q1 �= 0 (3.9) implies	2 = 0. Then
	1 = 	2 = 0, andD1 is n × n matrix, which leads us to a contradiction.�

ForPer− case we need an analogue of Lemma 3.

Lemma 4. Consider two3-diagonaln × n matrices

D± =




d1 ± d p1 0 0
q2 d2 p2 0 0
0 q3 d3 p3 0 0

· · · · · · · ·
0 qn−2 dn−2 pn−2 0

0 qn−1 dn−1 pn−1
0 0 qn dn



, (3.10)

where

p1, . . . , pn−1 �= 0, q2, . . . , qn �= 0 and d �= 0. (3.11)

Put

	± = detD±. (3.12)

Then

|	+| + |	−| > 0, (3.13)

i.e., the determinants	+ and	+ could not be zeroes simultaneously.

Proof. Decomposing along the first row, we obtain

	± = (d1 ± d)	2 − p1q2	
3 (3.14)

so

2d	2 = 	+ − 	−. (3.15)

If 	+ = 	− = 0 then	2 = 0 (becaused �= 0), and by (3.14)	3 = 0 (becausep1q2 �= 0).
But this contradicts Lemma 1 if we apply it to the matrixD2. �

2. Let t = 2p − 1, p�1.By Proposition 1 (ii), all eigenvalues ofLPer− (and ofK) are
simple. Now we consider the casePer+. The spectral equation (2.17) can be split into even
and odd components; ifw = (A,B) then (2.17) becomes

(Keven− �)A = 0, (Kodd− �)B = 0,

or in matrix form

(H 0 − �)A = 0, (H 2 − �)B = 0, (3.16)
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where (withk even)H 0 is


0 2�(t − 1) 0 ·
4�(t − 1) 22 2�(t − 3) ·

0 2�(t − 3) 42 2�(t − 5) ·
· · · · · · ·
· · · · · · ·

2�(t − 1+ k) k2 2�(t − 1− k) ·
· · · · · · ·




(3.17)

as it follows from (2.25)–(2.31).
All terms on the off-diagonals are nonzero butoneon thepth line [see (2.29) or (2.31)]

t − 1− k = 0 if k = 2p − 2. (3.18)

This partially decouples systems (2.27)–(2.29) and (2.30)–(2.31). If

A = (a, a′), a = (Ak)
2p−2
0 , a′ = (Ak)

∞
2p, k even (3.19)

and the same forB, i.e.,

B = (b, b′), b = (Bk)
2p−2
2 , b′ = (Bk)

∞
2p, k even, (3.20)

then

(1) (H 0
2p−2 − �)a = 0,

(2) a2p−2 · 2� · 4(p − 1)e2p + (H 2p − �)a′ = 0,
(3.21)

whereep = (	ip)i∈� is a coordinate unit vector in 2, and

(1) (H 2
2p−2 − �)b = 0,

(2) b2p−2 · 2� · 4(p − 1)e2p + (H 2p − �)b′ = 0.
(3.22)

Lemma 5. If � is aPer+ eigenvalue for K of multiplicity1, then

	0(�; �) = 0 or 	1(�; �) = 0. (3.23)

Remark. With p fixed, we omit it in the notations of	0 and	1

	0(�; �) = det
(
H 0

2p−2(�) − �
)
, (3.24)

	1(�; �) = det
(
H 2

2p−2(�) − �
)
. (3.25)

Notice that

deg	0 = p, deg	1 = p − 1. (3.26)

If � = 0 then

	0(�; 0) = −�	1(�; 0) = −�
p−1∏
1

[(2j)2 − �]. (3.27)
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Proof of Lemma 5. First, we assumep�2. By (ii) in Section 2.1, if

Ku = �u, u �= 0 (3.28)

and

dim E(�) = 1, (3.29)

then

(i) u is even but no odd nonzero function satisfies (3.28), or
(ii) u is odd but no even nonzero function satisfies (3.28).

In case (i)

u = A0 +
∞∑
k=2

k even

Ak coskx (3.30)

and, with notations (3.19), Eq. (3.21) holds. We claim that

	0(�, �) = 0. (3.31)

Otherwise, by (1) in (3.21),a = 0, its componentA2p−2 = 0 as well, the second equation
in (3.21) becomes just

(H 2p − �)a′ = 0. (3.32)

With u �= 0 we should havea′ �= 0 as well. But Eqs. (3.21.2) and (3.22.2) are essentially
the same, so if we define

B = (0, b′), b′ = a′, (3.33)

(see notations (3.20)) we get a sequenceB such that (3.22) holds. It gives us a nonzero odd
function

v(x) =
∞∑
k=2

k even

Ak sinkx (3.34)

which satisfies (3.28), and therefore, the multiplicity of� is �2. This contradiction proves
(3.31).
In case (ii)

u =
∞∑
k=2

k even

Bk sinkx, v �= 0 (3.35)
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and

Kv = �v. (3.36)

We claim that

	1(�; �) = 0. (3.37)

Otherwise, by (3.22.1)b = 0, and by (3.22.2)

(H 2p − �)b′ = 0, b′ �= 0.

Then

u =
∞∑

k=2p

k even

Bk coskx, v �= 0 (3.38)

is a nonzero even solution of (3.28). This contradiction proves (3.37). Lemma 5 is proven
for p�2.
If p = 1 then the matrixH 0 ∈ (3.17)has the form

H =




0 0 0
8� 4 −4� 0
0 8� 16 −8� · · ·
· · · · · · · · · · · · · · ·


 (3.39)

and

	0(�; �) = −� ∀�, (3.40)

but an analogue of	1 ∈ (3.25)is not defined.We claim: If� �= 0 is an eigenvalue ofKPer+
then its multiplicity is 2. Indeed, ifu ∈ (3.30) + (3.28)then (3.21.1) tells us that

− �A0 = 0, (3.41)

soA0 = 0, and by (3.21.2)

(H 2 − �)a′ = 0, a′ �= 0. (3.42)

As in (3.32)–(3.33) it givesasecondnonzerosolutionv ∈ (3.34)of (3.28), so themultiplicity
of � is 2.
Vice versa, ifv ∈ (3.35) is a solution of (3.28) then

u =
∞∑
k=2

k even

Bk coskx

is a nonzero solution of (3.28), and again the multiplicity is 2.
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Therefore, ifp = 1and� is ofmultiplicity 1, then� = 0, i.e., it is a root of the polynomial
(3.40). Lemma 5 is proven.�

3. By Proposition 1(i), for an event = 2m, m�1, all eigenvalues ofLPer+ (and of the
corresponding operatorK) are simple. [See the comment related to complex� in Section
5.5.] So, we need to analyze only the casePer−. Again, we decompose functions and
K into even and odd components; if by (2.32)–(2.33)w = (A;B) then (2.17) becomes
(Keven− �)A = 0, (Kodd− �)B = 0, or in matrix form

(H+ − �)A = 0, (H− − �)B = 0, (3.43)

whereA ∈ (2.32), B ∈ (2.33), � = 2N, and by (2.34)–(2.37),k ∈ �,

H± =




1± 2�t 2�(t − 2) 0
2�(t + 2) 32 2�(t − 4) 0

· · · · · · · · · · · · · · · · · ·
· · · 2�(t − 1+ k) k2 2�(t − 1− k) 0 · · ·

· · · · · · · · · · · · · · · · · ·



. (3.44)

We do not repeat all the details which are essentially the same as in the previous subsection.
All terms on the off-diagonals are nonzero but one in thej∗th line, whenj∗ = m as

t − 1− (2j − 1) = 0 if t = 2m, j = m. (3.45)

LetH±
m be the left-upperm × m submatrix ofH±, and

	±(�; �) = det
(
H±

m − �
)
. (3.46)

Notice that [compare (3.26)] now

deg	+ = deg	− = m�1 (3.47)

in both cases, and if� = 0

	+(�; 0) = 	−(�; 0) =
m∏

j=1

[
(2j − 1)2 − �

]
. (3.48)

Now “heads” ofA andB [compare (3.19), (3.20)]

a = (Ak)
2m−1
1 , b = (Bk)

2m−1
1 , k odd, (3.49)

have the same size (m-vectors), and “tails”

a′ = (Ak)
∞
2m+1, b′ = (Bk)

∞
2m+1, k odd, (3.50)

satisfy

X2m−1 · 4�(2m − 1)e2m+1 +
(
H 2m+1 − �

)
x′ = 0, (3.51)
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wherex′ = (Xk)
∞
2m+1, k is odd, andH

2m+1 is a lower right infinite block of the matrixH±
withoutmupper rows andm left columns.

Lemma 6. If � is aPer− eigenvalue for K of multiplicity1 then

	+(�, �) = 0 or 	−(�, �) = 0. (3.52)

Proof. Would be a copy of the Lemma5’s proof and we omit it. Of course, Lemma 4 is
used instead of Lemma 3.

4. Lemmas 5 and 6 already lead to conclusion that ift is an integer then all but maybe
[t/2] gaps are closed.

Proposition 7. (a) If t = 2p − 1, p�1, then the number of open even gaps does not
exceedp − 1.
(b) If t = 2m, m�1, then the number of open odd gaps does not exceedm.

Proof. Each open gap{�−, �+}, or {�−,�+}, gives two simple eigenvalues ofKPer+ or
KPer− . Such eigenvalues, by Lemmas5 and 6, are among the roots

R∗ = R0 ∪ R1, R0 := {� : 	0(�; �) = 0}, R1 := {� : 	1(�; �) = 0} (3.53)

for � ∈ �(P er+), and

R∗ = R+ ∪ R−, R+ := {� : 	+(�; �) = 0}, R− := {� : 	−(�; �) = 0} (3.54)
for � ∈ �(P er−).
With t = 2p − 1�1, by (3.26),

#R∗ �p + (p − 1) = 2(p − 1)+ 1 (3.55)

and the number of pairs of simple eigenvalues does not exceedp − 1.
If t = 2m, m�1, by (3.47),

#R∗ �m + m = 2m (3.56)

and the number of pairs of simple eigenvalues does not exceedm. In both cases, this number
is �[t/2]. �

4. Finitely many open even (odd) gaps

Proposition7 gives some improvement of Theorem 7.9 in [26, p. 107], which claims the
inequality�[t/2] + 1. But we want to get more information about the structure of these
open gaps. In particular, we will explain that the number of those gapsis equalto [t/2].
1. We need a few technical remarks on matricesH 2p (of (3.21)–(3.22)) andH 2m+1 ∈

(3.51). Lemmas 3 and 4 told something aboutfinite tridiagonal matrices. Now consider
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an infinite tridiagonal matrixh, h = D + P + Q, with D being diagonal andP,Q off-
diagonals,

h =



d0 p0
q1 d1 p1

q2 d2 p2
· · · · ·


 . (4.1)

We assume that the following conditions hold:

dk ∈ R, |dk| → ∞ (k → ∞), (4.2)

(|pk| + |qk|)/dk → 0, (4.3)

pk �= 0, k = 0, 1, . . . ; qk �= 0, k = 1,2, . . . . (4.4)

Lemma 8. The matrix h defines an operator in 2 which spectrum�(h) is discrete,and

�(h) = {�j }∞0 , �j → ∞ (4.5)

and each� = �j ∈ �(h) is an eigenvalue of geometric multiplicity1.

Proof. Condition (4.3) guarantees that for large enoughr > 0

sup
0�k<∞

2 · |pk| + |qk|
r + |dk| � 1

2
. (4.6)

Indeed, there existsk∗ < ∞ such that

|pk| + |qk|
|dk| � 1

4
for k�k∗. (4.7)

Define

r∗ = 1+ 4 sup{|pk| + |qk| : 0�k�k∗}; (4.8)

then (4.6) holds forr�r∗. Put

z = ir, r�r∗. (4.9)

Thenf = (z − h)−1 is well defined. Indeed, see (4.1),

z − h = (z − D) − (P + Q) = (z − D)(1− T ),

T := (z − D)−1(P + Q), (4.10)

wherez − D is a diagonal operator with diagonal terms

z − dk, |z − dk| = (r2 + |dk|2)1/2�(r + |dk|)/2. (4.11)

Now (4.6) implies that

‖T ‖ = ‖(z − D)−1(P + Q)‖�1/2 (4.12)
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and therefore,

(z − h)−1 = (1− T )−1(z − D)−1 (4.13)

is well defined, and‖(1− T )−1‖�2. In view of (4.11) and (4.2), the operator(z−D)−1 is
compact, thus(z− h)−1 is compact also. By the Riesz Theorem its spectrum is a sequence
{�j } such that�j → 0, and therefore,

�(h) = {�j }, �j = z − 1/�j → ∞. (4.14)

Moreover, the projectors

Pj = 1

2�i

∫
Cj

(
 − h)−1d
, (4.15)

where

Cj = {
 ∈ C : |
 − �j | = 	j , 	j = 1

2
min
j̃ �=j

|�j − �
j̃
|,

are finite-dimensional.
There is onlyoneeigenvectorg = gj with an eigenvalue� = �j as it follows from (4.1)

and (4.4). Indeed, there is only one sequencex = (xk)
∞
0 , even without the restriction to be

in  2, which satisfies(h − �)x = 0, or recurrences

d0x0 + p0x1 = 0,

q1x0 + d1x1 + p1x2 = 0

and so on. Ifx0 = �, then (withpk �= 0),

x1 = d0

p0
�, xk+1 = − 1

pk

(qkxk−1 + dkxk). (4.16)

It means that [geometric] multiplicity of� is 1. Lemma8 is proven. �

2. Now we are ready to prove the following.

Lemma 9. For each real� �= 0;

(i) if t = 2p − 1 then

�(H 2p) ∩ R∗ = ∅, (4.17)

whereR∗ = R0 ∪ R1 (see(3.53));
(ii) if t = 2m, then

�(H 2m+1) ∩ R∗ = ∅, (4.18)

whereR∗ = R+ ∪ R− (see(3.54)).
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Proof. By Lemmas3 and 4

R0 ∩ R1 = ∅ and R+ ∩ R− = ∅,
so we need to explain thatfour sets

R0 ∩ �(h∗), R1 ∩ �(h∗), R+ ∩ �(h∗), R− ∩ �(h∗) (4.19)

(whereh∗ = H 2p in (i) andh∗ = H 2m+1 in (ii)) are empty. The analysis of these four cases
is almost identical. Let us give all details to prove (ii)-subcase

R+ ∩ �(h∗) = 0. (4.20)

If (4.20) does not hold, then for some� ∈ �(h∗)

	+(�) ≡ 	+(�; �) = 0. (4.21)

By (3.46) it implies that∃a+ �= 0, a+ ∈ Cm such that (see (3.44)–(3.46))

(H+
m − �)a+ = 0, a+ = (A+

j )
2m−1
1 , j odd. (4.22)

Notice thatA+
2m−1 �= 0; otherwise by

q2m−1A
+
2m−3 + (d2m−1 − �)A+

2m−1 = 0 (4.23)

we hadA+
2m−3 = 0 as well, and a backward induction by lines of (4.22) shows thata+ = 0.

But it is NOT the case.
Of course, in (4.22)H+

m is a submatrix ofH+ ∈ (3.44), and

dk = k2, qk = 2�(2m − 1+ k), pk = 2�(2m − 1− k). (4.24)

With � ∈ �(h∗), h∗ = H 2m+1, we have an eigenvectorc �= 0,

(h∗ − �)c = 0. (4.25)

By Lemma8 � has a (geometric) multiplicity 1, andY ≡  2(F ), whereF is the set of all
odd integersk�2m + 1 can be decomposed as a direct sum (not necessarily orthogonal)

Y = ImP + Im (1− P), (4.26)

with

P = 1

2�i

∫
|�−z|=ε

(z − h∗)−1dz, (4.27)

where

ε = 1

2
min{|� − �| : � ∈ �(h∗), � �= �}.

Now we will use theh∗’s properties; it is a restriction ofKeven, orK, on its invariant sub-
spaceY. The operatorK = KPer− is similar to a self-adjoint operatorLPer− . [This is not
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the case ifa, b in (2.1) and (2.4) are not real; see further comment in Section 5.5.] There-
fore, the geometric multiplicity of eachh∗-eigenvalue is equal to its algebraic multiplicity.
Lemma 8 implies that

dim ImP = 1, and ImP = {�c : � ∈ C}. (4.28)

PutU = Im (1− P); then (4.26) can be written as

Y = {�c} + U, h∗U ⊂ U, (4.29)

�(h∗|U) = �(h∗) \ {�}. (4.30)

Of course,

(
0
c

)
is a�-eigenvector ofKeven [see (3.43)–(3.51)]. Let us try to find another

�-eigenvector of the form

(
a+
y

)
, wherea+ ∈ (4.22), y ∈ Y or eveny ∈ U.

We have

(Keven− �)
(
a+
y

)
=

[
(H+

m − �)a+
�A+

2m−1e2m+1 + (H 2m+1 − �)y

]
, (4.31)

where� = q2m+1 = 2� · 4m. By (4.29)

e2m+1 = �c + u, � ∈ C, u ∈ U. (4.32)

Choosey = y∗ ∈ U in such a way that

�A+
2m−1u + (H 2m+1 − �)y∗ = 0. (4.33)

By (4.30) the operator(h∗ − �)|U is invertible, so

y∗ = (� − h∗)−1�A+
2m−1u (4.34)

is well defined; it solves Eq. (4.33). Therefore, by (4.31),

(Keven− �)
(
a+
y∗

)
=

[
0

�A+
2m−1�c

]
, � = 8�m �= 0. (4.35)

We have no control on�; it comes from (4.32). Let us analyze the alternative:� = 0 or
� �= 0.

If � = 0, with a+ �= 0, we have two linearly independent�-eigenvectors
(
0
c

)
and(

a+
y∗

)
for Keven. But it is impossible, as we noticed in Section 2, (2.14)–(2.21).

If � �= 0 then the coefficient̃� = �A+
2m−1� in (4.35) is not zero as well by (4.31) and

(4.23). In this casef0 =
(
0
c

)
andf1 =

(
a+
y∗

)
give us a Jordan block because

(Keven− �)f0 = 0 and (Keven− �)f1 = �̃f0, �̃ �= 0. (4.36)

But, this is impossible because the operatorK = Keven+ Kodd is similar to a self-adjoint
operatorL, and its invariant subspaceE = span{f0, f1} should haveTWOlinearly inde-
pendent�-eigenvectors. This contradiction completes the proof of the claim in (4.20). As



90 P. Djakov, B. Mityagin / Journal of Approximation Theory 135 (2005) 70–104

we noticed, other three sets in (4.19) could be analyzed in the same way to prove that they
are empty. �

3. In Lemmas 5, 6 we showed that any eigenvalue� of multiplicity 1

(i) for KPer+ whent = 2p − 1 is a root of	0 or 	1 (see (3.23)–(3.25));
(ii) for KPer− whent = 2m is a root of	+ or 	− (see (3.46)–(3.52)).

Now we will prove that the inverse is true.

Lemma 10. Let� be real and nonzero.

(i) If t = 2p − 1, then each� ∈ R∗ is simple root of	0 or 	1, and� is an eigenvalue of
KPer+ of multiplicity1.

(ii) If t = 2m, then each� ∈ R∗ is simple root of	+ or 	−, and� is an eigenvalue of
KPer− of multiplicity1.

Proof. Again we have four cases:	0 or 	1 in (i), and	+ or 	− in (ii).The analysis of these
four cases is almost identical. Let us give all the details in the (i)-subcase	1.
Assume that

	1(�) = 0. (4.37)

By Lemma9 the operator(h∗ − �) is invertible. For brevity, let us writeg = H 2
2p−2 (see

(3.22.1), (3.25), (3.37)). If� as a root of	1(z) = det(z−g) has multiplicity�2, then there
are two linearly independent vectors

b+
1 , b

+
2 ∈ Cp−1, b+

� = {B+
� (j)}2p−2

2 , j even, � = 1,2, (4.38)

such that

(g − �)b+
1 = 0 and (g − �)b+

2 = �b+
1 . (4.39)

Put

y1 = (� − h∗)−1�B+
1 (2p − 2)e2p (4.40)

and

y2 = (� − h∗)−1 [−�y1 + �B+
2 (2p − 2)e2p

]
. (4.41)

These vectors are well defined because by Lemma9(i) the operator(� − h∗) is invertible.
Then [compare (4.31)–(4.35)] by (4.39)–(4.41)(

Kodd− �
) [

b+
1
y1

]
=

[
(g − �)b+

1
�B+

1 (2p − 2)e2p + (h∗ − �)−1y1

]
=

[
0
0

]

and (
Kodd− �

) [
b+
2
y2

]
=

[
(g − �)B+

2
�y1

]
= �

[
b+
1
y1

]
,
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or with f� =
[
b+
�
y�

]
, � = 1,2,

(
Kodd− �

)
f1 = 0,

(
Kodd− �

)
f2 = �f1. (4.42)

By (4.38)f1 andf2 are linearly independent odd functions. Again [compare the end of the
proof of Lemma 9, after (4.34)] if� = 0, then we have TWO linearly independent odd
�-eigenfunctions forK that is impossible. If� �= 0 thenf1 andf2 give us a Jordan block
by (4.42), but it is impossible either, becauseK is similar to the self-adjoint operatorL. It
proves that� is a	1-root of multiplicity 1. In this case a vectorb+

1 , b+
1 ∈ (4.39), does

exist, and withy1 ∈ (4.40) give an odd�-eigenfunction

f1 =
[
b+
1
y1

]
�= 0 (4.43)

for K orKodd. If � is of multiplicity �2 forK then there exist an even function (vector)

A = (a, a′) �= 0 (4.44)

(see (3.19), (3.21)) such that (3.21.1)–(3.21.2) hold. Ifa �= 0, then by (3.21.1),

	0(�) = 0;
however, by Lemma 1, (4.37) implies that	0(�) �= 0.With a = 0, (4.44) requiresa′ �= 0.
But then by (3.21.2)(

H 2p − �
)
a′ = 0 for � ∈ �(H 2p) (4.45)

which contradicts Lemma9, (4.17). Therefore,� ∈ (4.37) is a simple eigenvalue ofK.

Lemma 10 is proven. �

4. The technical lemmas in this section have quite elementary proofs; sometimes—and
it is often essential—these proofs use the fact that our non-symmetric matrices represent
operators similar to self-adjoint ones.
Direct analysis of thesematrices and polynomials	0, 	1, 	± and their zeroes can be done

with a help of few basic facts about OPS,orthogonal polynomial sequences. Let us remind
these facts (we refer to [6] for details and proofs; see Sections 1.4–1.6, pp. 18–28).
For any sequences{cn}∞1 of reals and{�n}∞1 , �n �= 0, let us define polynomials

Pn(x) = (x − cn)Pn−1 − �nPn−2(x), n = 1,2, . . . , (4.46)

P−1(x) ≡ 0, P0(x) ≡ 1 (4.47)

(compare (4.1) and (4.6),[6, pp. 18–21]). Then for eachn ∈ N the zeroes ofPn(x) are
real and simple [6, Theorem 5.2, p. 27]. Let us denote its zeroes byxn(i) being ordered by
increasing size, i.e.,

xn(1) < xn(2) < · · · < xn(i) < xn(i + 1) < · · · < xn(n). (4.48)
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The zeroes ofPn(x) andPn+1(x) mutually separate each other, i.e.,

xn+1(i) < xn(i) < xn+1(i + 1) < · · · < xn(i + 1), i = 1, . . . , n (4.49)

[6, Theorem 5.3, p. 28].
Thesestatementsareuseful to usbecause	0 and	1 couldbeconsideredas twoconsequent

terms of such OPS. Indeed, witht = 2p − 1 the matrixH 0
2p−2 in (3.24), (3.25) and (3.17)

is 


0 2� · 2(p − 1)
4� · 2p 22 2� · 2(p − 2)

0 2� · 2(p + 1) 42 2� · 2(p − 3)
· · · · · · · · · · · · · · ·

2� · 2 · 2(p − 1) (2p − 2)2



. (4.50)

All elements on the off-diagonals are not zeros. We go backward; put

Q1(x) = (2(p − 2))2 − x, (4.51)

Qk(x) = det
[
H

2(p−k)
2p−2 − x

]
. (4.52)

As we already noticed

Qk+1(x) = (ck+1 − x)Qk(x) − �k+1Qk−1(x), (4.53)

where

ck = (2(p − k))2, 1�k�p, (4.54)

�k = (k − 1)(2p − k)16�2, 2�k�p − 1, (4.55)

�p = 32�2(p − 1)p. (4.56)

We can (arbitrarily) put

ck = 0, �k = 1 for k > p, (4.57)

to haveOPSwell-defined for alln ∈ N, but we are really interested only in two polynomials

	0(x) ≡ Qp(x) and 	1(x) ≡ Qp−1(x). (4.58)

If x0(i), 0� i�p − 1, andx1(i), 1� i�p − 1, are the zeros of	0 and	1 being ordered
by increasing size as (4.48), by (4.49) we have

x0(0) < x1(1) < x0(1) < · · · < x1(i) < x0(i) < · · · < x0(p − 1). (4.59)

Therefore, the roots of	0 and	1 are real and distinct [we knew this by Lemma3], and they
interlace, i.e., (4.59) holds for all� �= 0.The latter is an important corollary of (4.46)–(4.49).
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Analysis of zeros of	+ and	− is a little more complicated. Recall that (3.46) defines
these polynomials (with parameter�) by matrices (3.44)

H±
m =




1± 4�m 4�(m − 1)
4�(m + 1) 32 4�(m − 2)

0 4�(m + 2) 52 4�(m − 3)
· · · · · · · · · · · · · · ·

4�(2m − 1) (2m − 1)2



. (4.60)

Now 	+ and	−,

	± = det
(
H±

m − �
)

(4.61)

are polynomials of the same orderm but OPS theory helps us if we notice (compare with
Lemma4) the following. The left column is a sum of


1

4�(m + 1)
0
·
0


 and




± 4�m
0
0
·
0


 . (4.62)

This decomposition implies that

	±(x; �) = P(x; �) ± 4�mQ(x; �), (4.63)

whereP andQ are consequent polynomials of OPS we could construct by using the matrix


1 4�(m − 1)
4�(m + 1) 32 4�(m − 2)

0 4�(m + 2) 52 4�(m − 3)
· · · · · · · · · · · · · · ·

4�(2m − 1) (2m − 1)2




(4.64)

for a backward procedure in the same way as we used matrix (4.50) to explain that	0 and
	1 in (4.58) have this property. Let

zj (�), 1�j �m and z̃j (�), 2�j �m, (4.65)

be the zeros ofP andQ in (4.63). Again by (4.49) they interlace so

z1(�) < z̃2(�) < z2(�) < · · · < z̃m(�) < zm(�). (4.66)

But these zeros are not (case (4.59) was easy) the zeros of our polynomials	± in (4.63).
Still (4.66) is important and useful. Let

�±
j (�), 1�j �m, (4.67)
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be zeros of	±.We know that

P(z; 0) = (1− z)Q(z; 0) = (1− z)

m∏
j=2

[
(2j − 1)2 − z

]
(4.68)

and

�±
j (0) = (2j − 1)2, 1�j �m, (4.69)

zj (0) = (2j − 1)2, 1�j �m, z̃j (0) = (2j − 1)2, 2�j �m. (4.70)

We know by the above analysis thatzj (�), 1�j �m, are distinct for all real�, and
z̃j (�), 2�j �m are distinct as well. Therefore they are analytic functions of� ∈ R as
roots of polynomials with higher coefficient±1. Eq. (4.69) tells us that these roots are
distinct if � = 0 so they remain distinct for small enough�, certainly, if |�| < 1/7.Let us
assume for a while that|�| < 1/7.We want to show that for 0< � < 1/7

�−
1 (�) < �+

1 (�) < �−
2 (�) < · · · < �−

m(�) < �+
m(�). (4.71)

BecauseP andQ are of ordermandm− 1, the rootz1(�) is special, so first we prove that

�−
1 (�) < �+

1 (�), 0< � < 1/7. (4.72)

With notations (4.65) and (4.67)

P(z, �) =
m∏
1

(zk(� − z) = (z1(�) − z)R1(z, �), (4.73)

where

R1 =
m∏
2

(zk(�) − z) (4.74)

and

Q(z, �) =
m∏
2

(z̃k(� − z)) ≡ R̃1(z; �). (4.75)

Then

P(�+
1 (�); �) = (z1(�) − �+

1 (�))R
±
1 (�), (4.76)

where

R±
1 (�) = R1(�

±
1 (�); �) =

m∏
2

(zk(�) − �±
1 (�)) (4.77)

and

Q(�±
1 (�); �) = R̃±

1 (�), (4.78)
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where

R̃±
1 (�) =

m∏
2

(z̃k(�) − �±
1 (�)). (4.79)

All these functions are analytic on� for |�| < 1/7.Our basic equation for�±
1 is (4.63); it

implies

(z1(�0 − �±
1 (�))R

±
1 (�) ± 4m�R̃±

1 (�) = 0, (4.80)

�±
1 (�) = z1(�) ± 4m�

(
R̃±
1 (�)/R±

1 (�)
)
. (4.81)

By (4.77), (4.79) and (4.69)

R±
1 (0) = R̃±

1 =
m∏
2

=
[
(2j − 1)2 − 1

]
. (4.82)

Therefore, for some�∗
m > 0 and−�∗

m < � < �∗
m the ratiosR̃+

1 /R+
1 andR̃−

1 /R−
1 on the

right-hand side of (4.81) are certainly positive and between 1/2 and 2, so

�−
1 < z1(�) < �+

1 (�), 0< � < �∗
m (4.83)

and

�+
1 < z1(�) < �−

1 (�), −�∗
m < � < 0. (4.84)

Now we consider the roots�±
j , 2�j �m. For 2�k�m, as in (4.73)–(4.79)

P(z, �) = (z1(�) − z)Rk(z; �), (4.85)

where

Rk(z, �) =
m∏

j=2

j �=k

(zj (�) − z) (4.86)

and

Q(z, �) = (z̃k(�) − z)

m∏
j=2

j �=k

(z̃j (�) − z) ≡ (z̃k(�) − z)R̃k(z; �). (4.87)

Put

R±
k (�) = Pk(�

±
k (�); �) (4.88)

and

R̃±
k (�) = P̃k(�

±
k (�); �). (4.89)
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As in (4.82)

R±
k (0) = R̃±

k (0) =
m∏

j=2

j �=k

[
(2j − 1)2 − 1

]
. (4.90)

All these functions are analytic on� for |�| < 1/7,and for some�∗∗ > 0 (the same for all
k, 2�k�m) if � is real and|�| < �∗∗, then we have

1/2< R̃+
k (�)/R+

k (�), R̃−
k (�)/R−

k (�) < 2. (4.91)

The basic equation (4.63) for�±
k (�) implies:

(z1(�) − �±
k (�))(zk(�) − �±

k (�))R
±
k (�) ± 4m�(z̃k(�) − �±

k (�))R̃
±
k (�) = 0 (4.92)

and

zk(�) − �±
k (�) ± 4m�

R̃±
k (�)

R±
k (�)

· z̃k(�) − zk(�) + zk(�) − �±
k (�)

z1(�) − �±
k (�)

= 0, (4.93)

or

�±
k (�) = zk(�) ± 4m�(z̃k(�) − zk(�))S

±
k (�), (4.94)

where

S±
k (�) = R̃±

k

R±
k

· 1

z1(�) − �±
k (�)

[
1± 4m�

R̃±
k

R±
k

· 1

z1(�) − �±
k (�)

]−1

(4.95)

with

�±
k (0) = (2k − 1)2 and z1(0) = 1. (4.96)

For |�| < �∗∗
m the denominator

z1(�) − �±
k (�) <

(
1− (2k − 1)2

)
+ 1� − 7 if k�2, (4.97)

is negative and

S±
k (�) < 0, |�|��∗∗

m . (4.98)

By interlacing (4.66) we obtain

0< zk(�) − z̃k(�), (4.99)

so (4.94), (4.98) and (4.99) imply for 0< � < �∗∗
m that

�−
k (�) < zk(�) < �+

k (�) (4.100)

and for−� < � < 0

�+
k (�) < zk(�) < �−

k (�), 2�k�m. (4.101)

Fork = 1 it is proven in (4.83) and (4.84).
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We explained (see Lemma4) that

R+ ∩ R− = ∅ for � �= 0. (4.102)

Therefore, the interlacing

�−
1 (�) < �+

1 (�) < �−
2 (�) < · · · < �−

m(�) < �+
m(�), (4.103)

which we have just proven for 0< � < �∗∗
m will remain valid for all � > 0. The same

extension by continuation will preserve the interlacing

�+
1 (�) < �−

1 (�) < �+
2 (�) < · · · < �+

m(�) < �−
m(�) (4.104)

for all � < 0.
It is interesting to notice for the roots of	± that their ordering changes (see (4.103) and

(4.104)) when� goes from positive to negative. (It does not happen in thePer+ case (see
(4.59)). But this is not surprising because

	0(�; �) = 	0(�; −�) and 	1(�; �) = 	1(�; −�), (4.105)

i.e.,	0 and	1 are even with respect to�, but	+(�; −�) = 	−(�; �).
5. We can summarize the analysis and results of this section as the following.

Theorem 11. Let

v(x) = a cos 2x + b cos 4x, a = −4�t, b = −2�2 real, � �= 0, (4.106)

be a potential of the Hill operator

Ly = −y′′ + v(x)y, 0�x��. (4.107)

(i) If t = 2p− 1, p�1, andbc = Per+ then the first2p− 1 eigenvalues are simple,and
others are double,

�+
0 (�) < �−

2 (�) < �+
2 (�) < · · · < �−

2(p−1)(�) < �+
2(p−1)(�)

< �−
2p(�) < �+

2p(�) < �−
2j (�) = �+

2j (�) j > p. (4.108)

Moreover,the eigenvalues�+
2k(�), 0�k�p − 1, are zeros of the polynomial	0(�, �),

and the eigenvalues�−
2k(�), 0�k�p − 1, are zeros of the polynomial	1(�, �).

(ii) If t = 2m, m�1, andbc = Per−, then the first2m eigenvalues are simple and others
are double,i.e.,

�±
1 (�) < �±

3 (�) < · · · �±
2m−1(�) < �±

2m+1(�) < · · · (4.109)

and

�−
2j−1(�) < �+

2j−1(�), 1�j �m, �−
2j+1(�) = �−

2j+1(�), j �m. (4.110)

Moreover,the eigenvalues�+
2j−1(�), 1�j �m, are zeros of the polynomial	+(�, �)

if � > 0, and of the polynomial	−(�, �) if � < 0, andv.v., the eigenvalues�−
2j−1(�),
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1�j �m, are zeros of the polynomial	−(�, �) if � > 0, and of the polynomial	+(�, �)
if � < 0.

6. Just to demonstrate how the structure of spectra changes when the parametersa, b

cross the integer levels oft in (3.2) we consider pockets of instability of one-parametric
family of potentials

v(x) = −�(8 cos 2x + 8 cos 4x). (4.111)

According to (3.2)

8(−8�)t2 + (8�)2 = 0, (4.112)

so

t = �2. (4.113)

Therefore, all eigenvalues in the case of potentialv ∈ (4.111) are simple (the zones of
instability are open) if�2 is not an integer.

If t = �2 is an integer then according to Theorem 1 the firstt zones are open, the(t +1)st
zone is closed, and then they interlace, i.e., the zonest + 2m, m = 1,2, . . . , are open and
the zonest + 2p − 1, p = 1,2, . . . , are closed. It is shown in the following diagram.
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We need to point out that this is a diagram, not a real graph. It ignores the values of�±
and how two curves�−

n (�), �
+
n (�) intersect at the integer�2. Even at� = 0 the diagram

does not show the level of contact of these curves with the same tangent (vertical) line.

5. Comments; conclusion

1. The crucial step in killing a higher-frequency term of potential (2.4) is transformation
(2.7) used by Ince [21] in the 1920s, and Magnus and Winkler in the 1950s. Of course, in
the 1980s such type of gauge transform became routine in both mathematical and physical
literature, but it was not a standard procedure in the 1930s or even in the 1950s. True,
one can find “Sommerfeld procedure” as Razavy [33] put it, in the 1929 book [36], and
occasionally in the 1930s and 1940s. But even the Razavy’s observation [33] in 1980 that
the bistable potential in the Schrödinger operator

L� = �′′ +
(
ε + 1

8
�2 + (n − 1)� cosh 2x − 1

8
cosh 4x

)

following the Sommerfeld procedure

� = exp

(
−1

4
cosh 2x

)
�(x)

brings us to an operatorK = E−1LE,

K� = �′′ − � sinh 2x�′ + (ε + n� cosh 2x)�

without terms of the rate 4, has been considered as a breaking news. Of course, this is the
same transform (2.5)–(2.11) used by Ince in 1923 if you changex to ix.

Klotter and Kotowski in 1943 did numerical calculations [23] to see the behavior of the
eigenvalues of this operator but they used the five-diagonal matrix to present operator (2.6)
in trigonometric basis as it directly follows from (2.4). Multiplication by this potential is,
in an obvious way, a five diagonal matrix.
2. A tridiagonal matrix representation led Magnus and Winkler [48] to Theorem 7.9 in

[26, p. 107], becausea zeroon the off-diagonal changes drastically the spectra and gives a
very special finite-dimensional subspace (invariant forK orL, or for adjointK∗). It makes
the work of Magnus and Winkler in the 1950s quite a remarkable piece—if we follow
the language of the 1990s [39,40,14]—in the theory of quasi-exactly solvable differential
equations, or QES. Indeed, this is one of the canonical examples in this QES-theory (see
(60) and (65) in Turbiner [38]). But one cannot see in this literature any mentioning of Ince
[20–22] or Magnus andWinkler results from the 1950s [48], or their exposition in the books
[1,26] published in the 1960s.
3. Our Theorem 11 sharpens the results of Magnus and Winkler by giving complete

analysis of spectra of a “head” matrix (or, the algebraic sector, as Shifman and Turbiner say
in [34]) and a “tail” matrix and their relationship. By (not well motivated) analogy we can
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ask whether the same spectral properties are observed in quasi-exactly solvable equations
of one variable (see their catalogue in[38] or [39,40]).
A. Are all eigenvalues in the algebraic sector simple?
Of course, the answer is positive, if one can bring this block (by some gauge transforma-

tion?) to tridiagonal matrix without zeroes on the off-diagonals. In our context Lemma 10,
together with Lemma 9, gives a positive answer to Question A.
Next two questions are vague because, with great emphasis on an algebraic sector (finite-

dimensional invariant subspace), QES-theory does not define in a canonical way a remain-
der, or a compliment, or a “tail” block of the differential operatorL which is quasi-exactly
solvable.
B. Are the eigenvalues of such an operatorL which is determined by the tail, or which

do not come from the algebraic sector, double, i.e., do they have multiplicity 2?
In our context the answer is YES because the “tail” operators in subspaces of even and

odd functions are just identical; see (3.21.2) and (3.22.2) inPer+-case, and (3.50)–(3.51)
in Per−-case.
Of course, if A and B have positive answers, then the eigenvalues of these two classes

could not coincide. [See Lemmas 9 and 10 in our context.] But we do not know this yet, so
let us ask the following question.
C. Is it true that eigenvalues from the algebraic sector could not coincidewith eigenvalues

coming from outside the algebraic sector?
4. Maybe, in these questions of Section 5.3 we implicitly assume that the operatorL

under the consideration is selfadjoint and parameters are real. Certainly, it was the case in
our analysis of operator (1.2) with potential (2.1), or(2.23)+ (2.55). But it is interesting to
check which statements (from Proposition 1 to Lemma 10) and their proofs depend on the
assumption that� is real. To be certain, let us now talk about positivet > 0 and complex�
with a = −4�t andb = −2�2.
What Propositions 1 and 2 really showed is that for any� ∈ C \ {0} the equation

− y′′ − (4�t cos 2x + 2�2 cos 4x)y = �y (5.1)

cannot have non-zeroevenandoddPer+-solutions (ift is not odd) at the same time, and
there could not beevenandoddPer−-solutions (ift is not even).
Technical Lemmas3 (and 4) and 8 hold for any matrices with complex entries as well.
In Lemmas 5 and 6 we have essentially the same effect as in the proofs of Proposition 1

and 2. It becomes more obvious if we point out that “multiplicity 1” there means a weaker
assumptionon “geometricmultiplicity 1”.Thedistinction is lost of course, ifL is self-adjoint
(andK is similar toL). So Lemmas 5 and 6 hold for any� ∈ C \ {0} as well.
But in the proofs of Lemmas 9 and 10, as we have noticed there2 we used in a critical

way thatK is similar to a self-adjoint operatorL.The same should be said about the claim (a
part of Theorem 11) that the roots of a polynomial	0(x; �) aresimple, i.e., the eigenvalues
of the “head” (or of the algebraic sector) have ALGEBRAIC multiplicity 1. This is not
necessarily true if� is complex. Let us consider explicit examples.

Example 1. Per−-case;t = 4, orm = 2. By (4.60)

2 Five lines after (4.27) or the paragraph after (4.42).
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	±(z; �) = det

[
1± 8� − z 4�

12� 9− z

]
= z2 − 10z + 9± 8�(9− z) − 48�2

and

	+ = z2 − (10+ 8�)z + 9+ 72� − 48�2,

	− = z2 − (10− 8�)z + 9− 72� − 48�2.

Roots of	+ are

5+ 4� ± 4(1− 2� + 4�2)1/2

and for	−

5− 4� ± 4(1+ 2� + 4�2)1/2.

These roots 6± i
√
3 are of multiplicity 2,

if � = (1± i
√
3)/4 for 	+, (5.2)

or

if � = (−1± i
√
3)/4 for 	−. (5.3)

The operatorsKevenandKodd have Jordan blocks (in their “heads”) if (5.2), or (5.3), hold.

Example 2. This example is more interesting and more complicated because now	0 is a
polynomial of degree 3. We considerPer+ -case;t = 5, or p = 3.By (4.50)

	0(z; �) = det


 −z 8� 0
24� 4− z 4�
0 16� 16− z


 = −(z3 − 20z2 + 64(1− 4�2) + 3.210�2).

It has a double roota in the case ofthreevalues of�2, or six values of� :
� = ±i0.14796395, a= 2.057664008;
� = ±(−.5537604+ i.5717989), a= 4.4300839+ i4.674391484;
� = ±(.5537604+ i.5717989), a= 4.4300839− i4.674391484.

But these three values ofa areLPer+ -eigenvalues of geometric multiplicity 1 anyway.
For curiosity, let us notice that

	1(z, �) = det

[
4− z 4�
16� 16− z

]
= z2 − 20z + 64− 64�2.

Its roots are 10±√
36+ 64�2, so	1 has a root+10 of multiplicity 2 if � = ±3i/4.Again,

LPer+ , or its restrictionKodd, has a Jordan block.
5. Examples in the previous subsection show that in Lemmas9, 10 and Theorem 11

the assumptions thata, b be real, orL be self-adjoint, are important. But let us follow
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[3,35,19,4,5,37] and raiseageneral questionabout thestructureof spectralRiemannsurfaces
related to theseproblems.Of course, itwouldbe interesting to changeboth�andt in complex
plane, i.e., to consider(�, t) ∈ C2 but for a while, let us talk about fixed positivet. Define,
for eacht > 0, four surfaces

G0(t) = {(�, �) : ∃x ∈  2(2N − 2) such that H 0(�)x = �x},
G1(t) = {(�, �) : ∃x ∈  2(2N) such that H 2(�)x = �x},
G+(t) = {(�, �) : ∃x ∈  2(2N − 1) such that H+(�)x = �x},
G−(t) = {(�, �) : ∃x ∈  2(2N − 1) such that H−(�)x = �x},

where for each parityH 0, H 2 are defined by (3.16)–(3.17), andH± are defined by (3.44).
What is the structure of these surfaces?
In the case of anharmonic oscillator equation such a question has been raised and solved

by Bender and Wu [3]; see also [35,37]. The case of Mathieu–Hill operators has a longer
history (see [30,31,4,5,19,42,43,45]).
If t is an integer thenaswehaveseen inour text [but this is really theTurbiner’s observation

[37] aboutanyquasi-exactly-solvable differential operator],G0 andG1 are split into two
surfaces ift is odd, whileG+ andG− are split into two surfaces ift is even, one of them
being algebraic. These surfaces are zero-surfaces of polynomials	0 and	1, or 	+ and	−
respectively. Examples 1 and 2 in Section 5.4 give some branching points (of order 2) of
these surfaces.
But their structure in general remains a mystery.
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